
www.manaraa.com

Design and Analysis of Flow Control Algorithmsfor Data NetworksbyPaolo L. Narv�aez GuarnieriS.B., Electrical Science and Engineering (1996)Massachusetts Institute of TechnologySubmitted to the Department of Electrical Engineering and ComputerSciencein partial ful�llment of the requirements for the degree ofMaster of Engineering in Electrical Engineering and Computer Scienceat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYJune 1997c Paolo L. Narv�aez Guarnieri, MCMXCVII. All rights reserved.The author hereby grants to MIT permission to reproduce anddistribute publicly paper and electronic copies of this thesis documentin whole or in part, and to grant others the right to do so.
Author :Department of Electrical Engineering and Computer ScienceMay 9, 1997Certi�ed by :Kai-Yeung (Sunny) SiuAssistant Professor of Mechanical EngineeringThesis SupervisorAccepted by :Arthur C. SmithChairman, Department Committee on Graduate Theses

www.manaraa.com

Design and Analysis of Flow Control Algorithms for DataNetworksbyPaolo L. Narv�aez GuarnieriSubmitted to the Department of Electrical Engineering and Computer Scienceon May 9, 1997, in partial ful�llment of therequirements for the degree ofMaster of Engineering in Electrical Engineering and Computer ScienceAbstractFlow control is a regulation policy which limits the source rates of a network so thatthe network is well utilized while minimizing tra�c congestion and data loss. Thedi�culties in providing an e�ective ow control policy are caused by the burstinessof data tra�c, the dynamic nature of the available bandwidth, as well as the feed-back delay. This thesis develops analytical tools for designing e�cient ow controlalgorithms for data networks.Though the ideas presented in this thesis are general and apply to any virtualcircuit networks, they will be explained in the context of the asynchronous transfermode (ATM) technology. In particular, this thesis will focus on the available bitrate (ABR) service in ATM, which allows the use of network feedback in dynamicallyadjusting source rates.Using a control theoretic framework, this thesis proposes a new design method-ology for ow control algorithms based on separating the problem into two simplercomponents: rate reference control (RRC) and queue reference control (QRC). TheRRC component matches the input rate of a switch to its available output band-width, while the QRC component maintains the queue level at a certain thresholdand minimizes queue oscillation around that threshold. Separating the ow controlproblem into these two components decouples the complex dynamics of the systeminto two easier control problems which are analytically tractable. Moreover, the QRCcomponent is shown to correct any errors computed by the RRC component by usingmeasurements of the queue length, and thus can be viewed as an error observer. Theinteraction between the two components is analyzed, and the various ways in whichthey can be combined are discussed. These new theoretical insights allow us to designow control algorithms that achieve fair rate allocations and high link utilization withsmall average queue sizes even in the presence of large delays.This thesis also presents a new technique that simpli�es the realization of owcontrol algorithms designed using the conceptual framework discussed above. The keyidea is to simulate network dynamics using control cells in the same stream as the datacells, thereby implicitly implementing an observer. This \natural" observer eliminates

www.manaraa.com

the need for explicitly measuring the round-trip delay. Incorporating these ideas, wedescribe a speci�c ow control algorithm that is provably stable and has the shortestpossible transient response time. Moreover, the algorithm achieves fair bandwidthallocation among contending connections and maximizes network throughput. It alsoworks for nodes with a FIFO queuing discipline by using the idea of virtual queuing.The ideas discussed above assume that the ow control policy can be directlyapplied to the end systems. However, most data applications today are only connectedto ATM via legacy networks, and whatever ow control mechanism is used in the ATMlayer must terminate at the network interface. Recent results suggest that in theseapplications, ATM's ow control policy will only move the congestion point from theATM network to the network interface. To address this issue, this thesis presents anew e�cient scheme for regulating TCP tra�c over ATM networks. The key ideais to match the TCP source rate to the ABR explicit rate by controlling the ow ofTCP acknowledgments at network interfaces, thereby e�ectively extending the ABRow control to the end systems. Analytical and simulation results are presented toshow that the proposed scheme minimizes queue size without degrading the networkthroughput. Moreover, the scheme does not require any changes in TCP or ATMexcept at the network interface.Thesis Supervisor: Kai-Yeung (Sunny) SiuTitle: Assistant Professor of Mechanical Engineering

www.manaraa.com

Design and Analysis of Flow Control Algorithms for DataNetworksbyPaolo L. Narv�aez GuarnieriSubmitted to the Department of Electrical Engineering and Computer Scienceon May 9, 1997, in partial ful�llment of therequirements for the degree ofMaster of Engineering in Electrical Engineering and Computer ScienceAbstractFlow control is a regulation policy which limits the source rates of a network so thatthe network is well utilized while minimizing tra�c congestion and data loss. Thedi�culties in providing an e�ective ow control policy are caused by the burstinessof data tra�c, the dynamic nature of the available bandwidth, as well as the feed-back delay. This thesis develops analytical tools for designing e�cient ow controlalgorithms for data networks.Though the ideas presented in this thesis are general and apply to any virtualcircuit networks, they will be explained in the context of the asynchronous transfermode (ATM) technology. In particular, this thesis will focus on the available bitrate (ABR) service in ATM, which allows the use of network feedback in dynamicallyadjusting source rates.Using a control theoretic framework, this thesis proposes a new design method-ology for ow control algorithms based on separating the problem into two simplercomponents: rate reference control (RRC) and queue reference control (QRC). TheRRC component matches the input rate of a switch to its available output band-width, while the QRC component maintains the queue level at a certain thresholdand minimizes queue oscillation around that threshold. Separating the ow controlproblem into these two components decouples the complex dynamics of the systeminto two easier control problems which are analytically tractable. Moreover, the QRCcomponent is shown to correct any errors computed by the RRC component by usingmeasurements of the queue length, and thus can be viewed as an error observer. Theinteraction between the two components is analyzed, and the various ways in whichthey can be combined are discussed. These new theoretical insights allow us to designow control algorithms that achieve fair rate allocations and high link utilization withsmall average queue sizes even in the presence of large delays.This thesis also presents a new technique that simpli�es the realization of owcontrol algorithms designed using the conceptual framework discussed above. The keyidea is to simulate network dynamics using control cells in the same stream as the datacells, thereby implicitly implementing an observer. This \natural" observer eliminates

www.manaraa.com

the need for explicitly measuring the round-trip delay. Incorporating these ideas, wedescribe a speci�c ow control algorithm that is provably stable and has the shortestpossible transient response time. Moreover, the algorithm achieves fair bandwidthallocation among contending connections and maximizes network throughput. It alsoworks for nodes with a FIFO queuing discipline by using the idea of virtual queuing.The ideas discussed above assume that the ow control policy can be directlyapplied to the end systems. However, most data applications today are only connectedto ATM via legacy networks, and whatever ow control mechanism is used in the ATMlayer must terminate at the network interface. Recent results suggest that in theseapplications, ATM's ow control policy will only move the congestion point from theATM network to the network interface. To address this issue, this thesis presents anew e�cient scheme for regulating TCP tra�c over ATM networks. The key ideais to match the TCP source rate to the ABR explicit rate by controlling the ow ofTCP acknowledgments at network interfaces, thereby e�ectively extending the ABRow control to the end systems. Analytical and simulation results are presented toshow that the proposed scheme minimizes queue size without degrading the networkthroughput. Moreover, the scheme does not require any changes in TCP or ATMexcept at the network interface.Thesis Supervisor: Kai-Yeung (Sunny) SiuTitle: Assistant Professor of Mechanical Engineering

www.manaraa.com

AcknowledgmentsFirst of all, I would like thank my research supervisor, Professor Kai-Yeung (Sunny)Siu, for his great support, guidance, and vision. The contents of this thesis are theresult of many, many hours of discussions with him. I appreciate the freedom I havehad to pursue my interests and his willingness to discuss new issues. His contributionsto this work are immense.Many thanks to the graduate students in my research group, Wenge Ren, AnthonyKam, Jason Hintersteiner, and Yuan Wu. Our daily interaction in the lab led to aconstructive working environment. Thanks to all the professors and classmates I havemet during my courses. The ideas and knowledge that I have learned from them willbe part of me forever.I also want to thank all the friends I have had in my �ve years at MIT. Withoutthem, life at MIT would have been quite unbearable. Special thanks to Craig Barrackfor all the discussions and helpful comments. He proofread much of the text in thisthesis.Finally, I want to express my deepest gratitude towards my parents for theirunconditional support during all these years. Without them, none of this would havebeen possible for me. I also want to congratulate my sister, Marina, for her birthdaytwo days from now.

www.manaraa.com

Contents
1 Introduction 101.1 Flow Control . 101.2 History . 111.2.1 Transmission Control Protocol (TCP) 111.2.2 Asynchronous Transfer Mode (ATM) 131.3 Objective . 161.4 Overview . 172 Basic Flow Control Ideas 192.1 Using Service Rate . 192.2 Using Queue Size . 202.3 Using E�ective Queue Size . 202.4 Estimating the E�ective Queue Size 212.4.1 Accounting Estimator . 212.4.2 Estimator with Smith Predictor 222.5 Transient Response and Performance 222.5.1 Single Node Network . 232.5.2 Multiple Node Network . 263 General Single Node Model and Analysis 283.1 Primal Control Model . 293.1.1 Input/Output Relations . 303.1.2 Response to Desired Queue Size 315

www.manaraa.com

3.1.3 Response to the Service Rate 313.1.4 Error Sensitivity . 353.2 Model Discussion and Improvements 363.2.1 Examining QRC and RRC Independently 363.2.2 Superposition of QRC and RRC 383.2.3 QRC as an Error Observer . 413.2.4 Linear Control with Weighted RRC and QRC 433.2.5 Non-Linear Control with RRC and QRC 443.3 Dual Control Model . 453.3.1 Using Accounting QRC . 453.3.2 Primal Versus Dual Control Structure 473.3.3 Varying the Dual RRC . 483.3.4 Optimal Control . 494 Implementation 534.1 Single Node . 544.1.1 QRC Feedback Using Sample and Hold 544.1.2 QRC Feedback Using Expiration 544.1.3 QRC Integrated Credit-Rate Feedback 554.1.4 RRC Feedback . 574.1.5 Determining the Service Rate 574.2 Multiple Node Extension . 604.2.1 Primal Control Extension . 604.2.2 Max-Min Fairness . 614.3 Simulations . 624.3.1 Single Node Case . 624.3.2 Multiple Node Case . 665 Bi-Channel Rate Control 705.1 Algorithm . 715.1.1 Concepts . 716

www.manaraa.com

5.1.2 Feedback Implementation . 725.1.3 RRC . 735.1.4 QRC . 745.1.5 Source Behavior . 775.2 Analysis . 785.2.1 Single Node Case . 785.2.2 Multiple Node Case . 815.3 Virtual Queuing . 845.4 Simulations . 855.4.1 Network Topology and Simulation Scenario 855.4.2 Network with per-VC Queuing 865.4.3 Network with FIFO Queuing 896 TCP Flow Control 916.1 Objective . 916.1.1 TCP over ATM . 926.1.2 Acknowledgment Bucket . 936.2 Algorithm . 946.2.1 Model . 946.2.2 Observer . 956.2.3 Translating Explicit Rate to Ack Sequence 976.2.4 Error Recovery . 986.2.5 Extension . 996.3 Analysis . 996.3.1 Model . 1006.3.2 Modes of Operation . 1016.3.3 Discussion . 1046.4 Simulation . 1047 Conclusion 1087

www.manaraa.com

List of Figures
1-1 General ATM Flow Control Model 141-2 Network Flow Control Model . 162-1 Network with Unachievable Settling Time 253-1 General Model of Flow Control System 293-2 Primal Control Model . 303-3 Impulse Response hr(t) with k=10, g=0.8, T=1 323-4 Step Response hr(t) for k=10,T=1 343-5 Frequency Response jHr(s)j for k=10,T=1 353-6 Step Response of QRC or RRC as Isolated Systems 373-7 Step Response of the Superposition of QRC and RRC 393-8 QRC is an Observer of RRC's Error 423-9 Dual Control Model . 463-10 New G Subsystem . 463-11 Some Possible Impulse Responses Obtained by Varying G(s) 504-1 RRC and QRC Commands with a Band-Limited White Noise ServiceRate . 634-2 Queue Size with a Band-Limited White Noise Service Rate 644-3 RRC and QRC Commands with Step Changes in Service Rate 654-4 Queue Size with Step Changes in Service Rate 654-5 Multiple Node Opnet Simulation Con�guration 674-6 RRC Commands at Each Source . 688

www.manaraa.com

4-7 QRC Commands at Each Source . 684-8 Output Queue of VC 3 at Each Switch 694-9 Output Queues of VCs 1, 2, and 3 at Each Switch 695-1 Single Node Block Diagram . 795-2 Multiple Node Opnet Simulation Con�guration 865-3 RRC Commands at Each Source with per-VC Queuing 885-4 QRC Commands at Each Source with per-VC Queuing 885-5 Output Queue of VC 3 at Each Switch 895-6 Output Queues of VCs 1, 2, and 3 at Each Switch 895-7 RRC Commands at Each Source with FIFO Queuing 895-8 QRC Commands at Each Source with FIFO Queuing 895-9 Virtual Queues of VC 3 at Each Switch 905-10 Virtual Queues of VCs 1, 2, and 3 at Each Switch 905-11 Actual FIFO Queues at Each Switch 906-1 General Model . 946-2 System Model . 1006-3 Simulation Con�guration . 1056-4 Window and Queue Size without Ack Holding 1066-5 Window, Queue, and Bucket Size using Ack Holding 1066-6 Packets Sent by the Source during Retransmit (no Ack Holding) . . . 1066-7 Packets Sent by the Source during Retransmit (with Ack Holding) . . 1066-8 Packets Transmitted by the Edge during Retransmit (no Ack Holding) 1076-9 Packets Transmitted by the Edge during Retransmit (with Ack Holding)1076-10 Edge Throughput without Ack Holding 1076-11 Edge Throughput using Ack Holding 107
9

www.manaraa.com

Chapter 1
Introduction
1.1 Flow ControlEvery data network has a limited amount of resources it can use to transport datafrom one host to another. These resources include link capacity, bu�er, and processingspeed at each node. Whenever the amount of data entering a node exceeds the servicecapacity of that node, the excess data must be stored in some bu�er. However, thebu�ering capacity is also limited, and when the node runs out of free bu�er space,any excess data is inevitably lost.This over-utilization of resources is commonly referred to as congestion. As inmany familiar examples (i.e. tra�c in a freeway), congestion leads to a degradationof the overall performance. For example, if too many cars try to enter a freeway, theresulting tra�c jam will cause every car to slow down. This in turn will cause thetotal rate of cars passing through a checkpoint to drop.In data networks, congestion causes data to be lost at nodes with limited bu�er.For most applications, the source will need to retransmit the lost data. Retransmissionwill add more tra�c to the network and further aggravate the degree of congestion.Repeated retransmissions lower the e�ective throughput of the network.In order to maximize the utilization of network resources, one must ensure that itsnodes are subject to as little congestion as possible. In order to eliminate or reducecongestion, the rates at which the sources are sending data must be limited whenever10

www.manaraa.com

congestion does or is about to occur. However, over-limiting the source rates will alsocause the network to be under-utilized.Flow control is a tra�c management policy which tries to ensure that the networkis neither under-utilized nor congested. An e�cient ow control scheme directly orindirectly causes the sources to send data at the correct rate so that the network iswell utilized.A good ow control scheme must also make sure that all the users are treatedin a fair manner. When the rate of incoming data needs to be reduced, the owcontrol must limit the bandwidth of each source subject to a certain fairness criterion.Therefore, ow control also implies an allocation of bandwidth among the di�erentsources that will guarantee not only e�ciency but also fairness.1.2 History1.2.1 Transmission Control Protocol (TCP)Even though the importance of ow control has been recognized since the �rst datanetworks, the problem did not become a critical issue until the mid 80's. At thattime, it was realized that the Internet su�ered from severe congestion crises whichdramatically decreased the bandwidth of certain nodes [16]. In 1986, Van Jacobson'steam made changes in the transmission control protocol (TCP) so that it e�ectivelyperformed end-to-end ow control [9]. Ever since, newer versions of TCP (Tahoe,Reno, Vegas) have incorporated more sophisticated techniques to improve TCP owcontrol. Many of these improvements are based on intuitive ideas and their e�ective-ness has been demonstrated by extensive simulation results and years of operation inthe real Internet.The end-to-end ow control mechanism imposed by TCP is performed almostexclusively at the end systems. TCP makes no assumptions on how the networkworks and doesn't require the network to perform any ow control calculations. TCPow control mechanism basically modi�es the error recovery mechanism at the end11

www.manaraa.com

systems so that it can perform ow control as well. The detection of a lost packet isused by TCP as an indication of congestion in the network. Detecting lost packetscauses the source to decrease its sending rate, whereas detecting no loss will causethe sending rate to increase. The disadvantage of this scheme is that congestion isdealt with only after it happens and after it is too late to prevent it. Furthermore,the loss of a packet does not necessarily indicate congestion, and the absence of lossdoes not indicate that the source can safely increase its rate. Under TCP's owcontrol scheme, a host or source has no idea of the state of the network other thanthe fact that packets are being lost or not. Valuable information about how muchthe links and queues are being utilized is simply not available to the transmittingsource. Because of these reasons, TCP's end-to-end ow control, although functionaland robust, is far from being optimal.It is clear that in order to improve TCP ow control performance, we need to use acontroller that uses more information about the current state of the network. Severalresearchers have proposed adding a ag in the TCP header that indicates congestionin the network [7, 18, 21]. The ag is turned on when the data passes through acongested node; the TCP source will then decrement the transmission rate. Otherways of improving TCP necessarily involve modifying TCP so that it can collect moreinformation on the network status and then act accordingly.At the same time, various underlying network technologies perform their own owcontrol schemes. For example, an ISDN link prevents congestion simply by allocatingbeforehand a �xed amount of bandwidth for every connection. If there is insu�cientbandwidth, the admission control will simply reject attempts by new users to establisha connection. Some local area networks (LAN), such as token rings, have their ownmechanisms to distribute bandwidth to the various users. Likewise, asynchronoustransfer mode (ATM) networks have their own ow control schemes depending onthe type of service o�ered. Because of ATM's exibility and controllability, it isperhaps the easiest type of network on which to implement an e�cient ow controlscheme. In this thesis, we will mainly focus on how to design ow control algorithmsin the more powerful ATM framework. However, the results will be shown to be12

www.manaraa.com

useful in performing ow control at the TCP layer as well.1.2.2 Asynchronous Transfer Mode (ATM)Asynchronous transfer mode (ATM) is generally considered the most promising net-work technology for future integrated communication services. The recent momentumbehind the rapid standardization of ATM technology has come from data networkingapplications. As most data applications cannot predict their bandwidth requirements,they usually require a service that allows competing connections to share the availablebandwidth. To satisfy such a service requirement, the ATM Forum (a de facto stan-dardization organization for ATM) has de�ned the available bit rate (ABR) serviceto support data tra�c over ATM networks.When the ATM Forum initiated the work on ABR service, the idea was to designa simple ow control mechanism using feedback so that the sources can reduce orincrease their rates on the basis of the current level of network congestion. As opposedto TCP ow control where the complexity of the controller resides in the end systems,ABR ow control performs most of its calculations in the network itself. To minimizethe implementation cost, many of the early proposals used only a single bit in thedata cells to indicate the feedback information. It has been realized that these single-bit algorithms cannot provide fast response to transient network congestion, and thatmore sophisticated explicit rate control algorithms are needed to yield satisfactoryperformance.As the implementation cost in ATM switches continues to decline, many vendorsare also looking for more e�cient ow control algorithms. The di�culties in providinge�ective ABR service are due to the burstiness of data tra�c, the dynamic natureof the available bandwidth, as well as the feedback delay. Though many proposedalgorithms for ABR service have been shown to perform well empirically, their designsare mostly based on intuitive ideas and their performance characteristics have notbeen analyzed on a theoretical basis. For example, in the current standards for ABRservice, quite a few parameters need to be set in the signaling phase to establish anABR connection. It is commonly believed that ABR service performance can become13

www.manaraa.com

Scheduler

Source

Physical Link with Delay
Controller

Switch

ATM
Physical Link

with Delay

ATM Cell

Buffer

Control Information in RM Cells

Real Data in Regular ATM Cells

Figure 1-1: General ATM Flow Control Modelquite sensitive to changes in some of these parameters. However, how to tune theseparameters to attain optimal performance is far from being understood, because of thecomplexity involved and the nonlinear relationship between the dynamic performanceand changes in the parameters.ABR service speci�es a rate-based feedback mechanism for ow control. Thegeneral idea of the mechanism is to adjust the input rates of sources on the basisof the current level of congestion along their VCs. It requires network switches toconstantly monitor the tra�c load and feed the information back to the sources.Unlike the ow control approach used in TCP, ATM-ABR can explicitly calculate thedesired incoming rates and directly command these rates from the sources. Figure1-1 presents a single node model of the ow control mechanism in an ATM network.Data encapsulated in ATM cells travels through the physical links . At the switch,the cells are bu�ered before they get serviced. The novelty in the ABR service is thatthe node also contains a controller which calculates a desired transmission rate forthe sources. This rate information encapsulated in resource management (RM) cellsis then sent back to the source .Recent interest in ABR service has brought about a vast amount of researchactivity on the design of feedback congestion control algorithms [1, 2, 8, 11, 12, 13,14

www.manaraa.com

14, 17, 23, 24]. They di�er from one another by the various switch mechanismsemployed to determine the congestion information and the mechanisms by which thesource rates are adjusted. Depending on the speci�c switch mechanisms employed,various congestion control algorithms yield di�erent transient behaviors.In [2], classical control theory is used to model the closed loop dynamics of acongestion control algorithm. Using the analytical model, it addresses the problemsof stability and fairness. However, as pointed out in [14], the algorithm is fairlycomplex and analytically intractable.In [14], the congestion control problem is modeled by using only a �rst ordersystem cascaded with a delay. The control algorithm is based on the idea of theSmith predictor [25], which is used as a tool to overcome the possible instabilitiescaused by the delays in the network. The Smith predictor heavily relies on knowledgeof the round-trip delay. The objective of this algorithm in is to minimize cell loss dueto bu�er overow. However, the algorithm only uses the queue level in determiningthe rate command, and without knowledge of the service rate, there is always a steady-state error with respect to the desired queue level. When the service rate changes(as is often the case in ABR service), the algorithm may lead to underutilization ofthe link capacity. The major limitation of the algorithm is that it assumes that thenetwork delay is known and remains constant. If the actual delay di�ers from theassumed constant delay, the controller response will exhibit oscillations and in somecases instability.This thesis uses many of the ideas presented in [14]. The Smith predictor is seenas a tool to estimate the amount of data in the links. This measurement is the key tobeing able to design stable ow control algorithms. Likewise, the queue stabilizationalgorithm presented in [14] is one of the two key controller components presented inthis thesis.
15

www.manaraa.com

Data Source

Data Source

Data Source

Data Source

Data Source

Network

data

control

data

controldata

control

data

control

data

control

Figure 1-2: Network Flow Control Model1.3 ObjectiveThis thesis focuses on network-based ow control schemes. In these schemes, thenetwork itself determines its level of congestion and determines how much data rateit is willing to accept from the sources. We assume that the network can communicatethis desired rate to sources and that the sources will comply. Under this framework(as seen in �gure 1-2), the network is directly controlling the source behavior. Thistype of network-based ow control is more powerful than those based on the end users(i.e. TCP ow control) because the information relevant to solving the ow controlproblem is present inside the network.This approach is directly applicable in ATM's ABR service since the ATM spec-i�cations support this type of ow control. The switches can include their desiredsource rates in the explicit rate (ER) �eld contained in the RM cells returning to thesource. The ATM source is then obliged to follow this explicit rate. At the sametime, we would like to use the results in this thesis in an internetworking environ-ment where the sources are not directly connected to ATM. For this purpose, we takeadvantage of the fact that most data applications use TCP in their transport layer,regardless of the network technology they are traversing. The latter part of this thesisexplains how a network node can control the transmission rate of a TCP source. Thistechnique e�ectively extends our network-based ow control algorithms to any source16

www.manaraa.com

that uses TCP as its transport protocol.1.4 OverviewUsing a control theoretic framework, this thesis studies various ways in which ane�ective ow control policy can be obtained. Because of its direct applicability, theow control schemes will be presented in the context of ATM.Chapter 2 will introduce some of the basic tools and ideas that can be used toenforce a ow control policy. Basic terminology such as available rate and e�ectivequeue is explained and simple ow control mechanisms are presented. The last sectionof the chapter proves some of the fundamental limitations involved in controlling anetwork.Chapter 3 describes the basic ow control model used in this thesis. The modelcombines the basic techniques from chapter 2. The model is analyzed and re�neduntil we arrive at the central idea of this thesis: the separation principle.Under this principle, the ow control mechanism is separated into two key com-ponents: rate reference control (RRC) and queue reference control (QRC). The RRCcomponent determines its rate command by using measurements of the availablebandwidth in each link, with the objective of adapting the input source rate to matchthe output available rate at steady state. On the other hand, the QRC componentcomputes its rate command by using measurements of the queue level at each switch,with the goal of maintaining the queue level at a certain threshold. The desirablesource rate is then equal to the sum of the QRC and RRC rate commands. The ad-vantage of this separation principle is that it decouples the complex dynamics of theclosed-loop control system into two simpler control problems, which are analyticallymore tractable and can be solved independently.Chapter 3 re-analyzes the separation principle from di�erent viewpoints. TheQRC component can be seen as an error observer of the RRC component. Thechapter also explains how the separation principle can be implemented using a primalas well as a dual structure. The primal structure relies on the RRC to maintain the17

www.manaraa.com

steady-state command, while the dual structure relies on the QRC for this task.In Chapter 4, various implementation issues are discussed. First, a discrete feed-back mechanism is developed which ensures stable and fast closed-loop dynamics.The available rate is de�ned in the multi-user context and an algorithm is derived toestimate this available rate. The separation principle is extended to the multi-nodecase. Finally, both the single-node and multi-node cases are simulated.In Chapter 5, a speci�c ow control algorithm called bi-channel rate control (BRC)is presented. Apart from using the separation principle and the other techniquesfrom the previous chapters, the BRC algorithm uses virtual data and virtual queuingtechniques. The virtual data technique creates a virtual channel in the network whichis used for simulation purposes. This extra virtual channel allows the BRC algorithmto function without knowledge of the round-trip delay. The virtual queuing allowsthe algorithm to work in switches that use only FIFO queues. The new algorithm issimulated under the same conditions as the simulations in chapter 4.Finally, in chapter 6 the TCP acknowledgment bucket scheme is presented. Theidea behind this scheme is to manipulate the ow of TCP acknowledgments whilethey are traversing an ATM network so that the ATM network can control the rateof the TCP source. The scheme is implemented by using an acknowledgment bucketat the ATM network interface. Simulation results are also presented to demonstratethe e�ectiveness of the scheme.

18

www.manaraa.com

Chapter 2
Basic Flow Control Ideas
In this chapter we will explore some of the basic ideas behind ow control algorithms.The purpose is to understand the fundamental di�culties one encounters as well asthe various mechanisms that one can use in order to provide ow control. The �rstsections discuss various tools that can be used for the ow control problem. Usingthese tools, chapter 3 will expose a comprehensive model for our ow control system.In section 2.5, the fundamental time limitations of ow control are presented.Our objective is to construct a controller that can regulate the ow of data enter-ing the network. We assume that the network has the computational capability tocalculate the correct distribution of rates and communicate these desired rates to thesources. We also assume that the sources will comply with the rate commands.In order to compute the rate command, the switches can use any information thatis available to them, such as queue sizes, service rates per VC, and any informationsent by the users or other switches. The switches can also estimate other states inthe network, such as the amount of data in the links.2.1 Using Service RateThe simplest mechanism to control the ow of user data into the network is to com-mand the user to send data at a rate no greater than the service rate of the slowestswitch in the virtual connection (VC). In steady state, the link is fully utilized and19

www.manaraa.com

there are no lost cells.However, every time the service rate of the switch decreases, some cells can belost. This ine�ciency is due to the propagation delay in the links which prevents thesource from reacting on time to changes in the service rates.A major problem with this scheme is that the queue is unstable and cannot becontrolled. In steady state, if there is any error in the service rate estimation, thequeue will either always be empty or will grow until it overows.2.2 Using Queue SizeA slightly more complex ow control mechanism involves measuring the queue sizeat the switch. The switch computes a user data rate in order to �ll the queue up toa reference queue size. This calculated rate is then sent as a command to the user.The computation of the rate requires a controller which outputs a rate commandbased on the error between the reference and real queue size. Since this controlsystem attempts to stabilize the queue size to a certain level, it keeps the switchbusy, maximizing throughput, while preventing cell loss.However, as in the previous section, the propagation delays of the links preventthe source from reacting on time and can cause cell loss and unnecessary reductionof throughput. Furthermore, this system has the disadvantage that it can becomeunstable if the time delay or controller gain is su�ciently large.2.3 Using E�ective Queue SizeThe instability of the preceding mechanism can be corrected by incorporating ane�ective queue into our controller. This e�ective queue includes all the data in thereal queue of the switch, as well as the data that is traveling from the user to theswitch and the data requests which are traveling from the switch to the source. Thee�ective queue includes the number of cells that are bound to enter the real queue nomatter what the switch commands in the future. Measurements or estimates of this20

www.manaraa.com

e�ective queue can be obtained using a Smith predictor or by using an accountingscheme. Both methods will be explained in the next section.This control scheme is nearly identical to that in the previous section with thedi�erence that the real queue size is replaced by the e�ective queue size. In this case,the controller tries to stabilize the e�ective queue size at a certain reference level.The advantage of this method is that since the switch can act on the e�ective queueinstantaneously, there is no command delay and no instability due to such delay.In some sense, the system in which we are interested (queue) is modi�ed so that itbecomes easier to control.The disadvantage of this technique is that the e�ective queue is not really whatwe are trying to control. When the data rate is smaller than the inverse of the linkdelay, the real queue is comparable to the e�ective queue and this approach is useful.However, as the data rate increases, the real queue becomes much smaller than thee�ective queue. At some point, in steady state, the real queue empties out and thedata rate saturates. For high delay-bandwidth product connections, the data linksare strongly under-utilized.2.4 Estimating the E�ective Queue Size2.4.1 Accounting EstimatorOne way of calculating the e�ective queue size is by using the accounting scheme.This is done by adding all the cells that the switch requests and subtracting all thecells that the switch receives. These cells that are \in ight" are then added to thereal queue size, q(t). If u(t) is the rate command of the switch, a(t) is the arrival rateof cells at the switch, the estimate of the e�ective queue size q?(t) can be expressedas:
E1[q?](t) = Z tt0 u(�)d� � Z tt0 a(�)d� + q(t) (2.1)21

www.manaraa.com

This approach is similar to the credit based scheme. In fact, credits and q? arerelated by: credits =Maximum Queue Size� q?. The disadvantage of this methodis that it can be unstable. A disturbance in the number of cells that get sent wouldcause a permanent error in this estimate. For example, if a link is lossy and somepercentage of the cells never make it to the queue, this estimator will add more cellsthan it subtracts, and the estimate will go to in�nity.2.4.2 Estimator with Smith PredictorAnother way of performing this calculation is by using a Smith predictor [25]. As inthe previous method, the Smith predictor adds the number of cells that the switchrequests and then subtracts them when they are expected to enter the switch's queue.This quantity is then added to the real queue's size. The calculation is done withthe help of an arti�cial delay which �gures out how many cells are about to enter thequeue. If Test is the estimated round-trip delay, the estimate of the e�ective queue is:
E2[q?](t) = Z tt0 u(t)dt� Z tt0 u(� � Test)d� + q(t) (2.2)The advantage of this second approach is that it is robust against disturbances:a constant error in u(t) will only produce a constant error in q?(t). The disadvantageis that a good a priori estimate of the round-trip time is needed. If this estimateis incorrect or the real round-trip time varies, this estimator might produce a largeerror.2.5 Transient Response and PerformanceIn this section, we will explore some of the fundamental limits on the transient re-sponse of ow control algorithms. We will show some of the restrictions that thenetwork itself imposes on the controller.We can think of a communication network as a system which contains states,22

www.manaraa.com

inputs, and disturbances. The states of this system are the sizes of the various queues,the number of cells in the channels, and the control information traveling in the links.The inputs are the rates at which the sources are sending data. The disturbancesare the switch service rates and the number of virtual channels passing through eachswitch. The purpose of a ow control algorithm is to compute the correct inputs tothis system so as to stabilize its states in spite of the disturbances.If all the disturbances of a communication network (i.e. the number of VCs andswitch output rates) are stationary, it is easy to establish a ow control policy. Thecorrect rate for each connection can be calculated o�-line so as to prevent congestionand ensure a max-min fair allocation of bandwidth. This fair distribution will ensurethat the network operates inde�nitely in steady state.If some of the disturbances of the network system change in a completely pre-dictable way, we can still calculate the correct allocations o�-line and come up withthe fair source rates to enforce at each moment of time. In this ideal case, the networkstates stabilize to a new value immediately after the change in the disturbance.If the disturbances change in an unpredictable manner, it will take some timefor the ow control algorithm to stabilize the network. This settling time is thetime required for the ow control algorithm to observe changes in the system andto control them. In other words, it is the time to reach steady-state operation afterthe last change in the disturbances. The settling time is mainly determined by thenetwork delays.2.5.1 Single Node NetworkWhen the network contains only one node, we can obtain very strong bounds on thesettling time. The settling time varies depending on whether the delay of the linkbetween the source and the switch is known or not. The minimum bounds on thetime needed to stabilize such systems are stated in the following theorems:Theorem 1 For a network consisting of a single source and a single switch connectedby a link with a known delay, the minimum time in which any ow control algorithm23

www.manaraa.com

can stabilize the network after a change in the switch's service rate is the round-tripdelay time (RTD) between the source and the switch.Proof: Let us assume that at time zero the last change in the switch's service ratetakes place. Because the link delay is known, the controller can calculate the e�ectsof this change on the network as soon as it knows of the change. Once the futuree�ects are known, the controller can request the source to send data at a rate thatwill correct the e�ects of the change of the service rate and immediately after at arate that will reestablish steady-state operation. If the controller is located at thesource, it will know of the service rate change at 1/2 RTD. If the controller is in theswitch, it can send its new rate requests at time 0, but the requests will only reachthe source at time 1/2 RTD. In both cases, the source starts sending data at the newstable rate at time 1/2 RTD, which will only reach the switch at time 1 RTD. �Note that this lower bound can only be achieved by a ow control algorithm thatcan accurately measure the disturbance (switch service rate), predict its e�ect on thenetwork, and request new rates instantly that will reinstate the switch's queue size.To prove the next theorem, we �rst need to prove the following lemma:Lemma 1 For a network consisting of a single source and a single switch connectedby a link with an unknown delay, the minimum time needed to detect the e�ect ofa change in the switch's service rate (given that the queue does not saturate) is theround-trip delay of the link (1 RTD).Proof: At the moment when the last change of the switch's service rate takes place(time 0), the switch's output queue is changing (increasing or decreasing). Regard-less of what the controller does after time 0, the queue will continue to change in anuncontrollable manner for 1 RTD. This is the time that it takes for a new controllercommand to have an e�ect on the queue. Since the RTD is unknown, between time0 and RTD, the controller does not know how much the queue size will change beforeits command has an e�ect on the queue. During this \unpredictable" period, thecontroller cannot know what the e�ect of the service rate change will be on the queue24

www.manaraa.com

Steady State

RTD

u(t)

t

t

a(t)

2 RTD

RTD 2 RTDFigure 2-1: Network with Unachievable Settling Timesize. It is only after time RTD that the controller can possibly know what the fullconsequence of the disturbance is on the queue size. The only exception is when thequeue size saturates before time RTD; in this case, the controller knows the e�ect ofthe rate change when the saturation occurs. �Theorem 2 For a network consisting of a single source and a single switch connectedby a link with an unknown delay, the minimum time in which any ow control al-gorithm can stabilize the network after a change in the switch's service rate , giventhat the queue does not saturate, is twice the round-trip delay time (2 RTD)between the source and the switch.Proof: Let us assume on the contrary that after the last change of the switch'sservice rate at time 0, the network can be stabilized before time 2 RTD. Figure 2-1shows an example of this scenario. In this case, the controller is located in the switch.Let u(t) be the instantaneous rate command given by the controller and a(t) be thearrival rate of data into the switch. Since we assumed that the system reaches steadystate before 2 RTD, a(t) must reach steady state before 2 RTD (otherwise the queuesize would oscillate). Because the source complies with the controller's command, we25

www.manaraa.com

know that a(t) = u(t�RTD). Therefore, u(t) must reach steady state before 1 RTD.This implies that the controller must know what the e�ect of the rate change at time0 is before 1 RTD. From Lemma 1 we know that this is not possible if the queue doesnot saturate. Therefore, our original assumption must be wrong, which proves thetheorem. The same argument can be applied if the controller is located in the sourceor any other place. �Note that we have not proved that it is possible to stabilize the network in 2 RTD,but that it is impossible to do so in less than that time. From a control-theoreticviewpoint, we can interpret this lower bound as the algorithm needing at least 1 RTDto observe the network and 1 RTD to control it.2.5.2 Multiple Node NetworkThe transient response time in a multi-node network is much harder to analyze thanin the single-node case. If some change of disturbance takes place in a particular node,it will trigger changes in the states of other nodes. These changes might propagateto the rest of the network.The analysis is greatly simpli�ed if we assume that there is no communicationor collaboration between the di�erent VCs in the network. From the perspective ofone particular VC (which we will call VC i, the activities of the other VCs can beregarded as disturbances on the queue sizes and available bandwidth of VC i on eachof its nodes. Furthermore, if the switches use a per-VC queuing discipline, the queuesize of each VC will not be directly a�ected by the other VCs; the only disturbanceapparent to VC i is the available bandwidth at each of its nodes.We will assume that the VCs do not collaborate with each other. For the moment,we will also assume that the switches use a per-VC queuing discipline. Under theseassumptions, we can determine the minimum time to achieve steady state in oneparticular node in a VC after a change in its available rate, given that the availablerate at the other nodes in the VC are already in steady state. It is the time ittakes for a control data unit that departs the node during the node's last change of26

www.manaraa.com

disturbance to travel to the source and back twice in a row. This is what we will referto as \2 RTD" of a particular node in a multi-node network. The time to completethe �rst loop is the minimum time needed to observe the e�ects of the last changeof the disturbance on the VC, while the time to complete the second loop is theminimum time to control the VC queue at the node. This limit can be proved withthe same arguments as in the proof of the single node case. The multi-node 2 RTD isdetermined by all the queuing delays upstream as well as by the propagation delaysof the links.Note that we have not shown anything about the global transient responses andstability of the entire network. We are just showing what is the shortest settling timepossible for one VC if the other VCs are already in steady state.

27

www.manaraa.com

Chapter 3
General Single Node Model andAnalysis
We will start our analysis by creating a general model which can use all the owcontrol schemes discussed in the previous chapter. The model is limited to the singlenode case. This model is a generalization of the one presented in [14]. The modeluses a uid approximation for all the data tra�c and control signals.On the left side of the model represented in �gure 3-1, we can observe the controlsystem that sends the rate command u(t) to the source. This command is sent tothe source and returns as an actual data rate. The feedback and data channel aremodeled as a delay e�sT where T is the round-trip delay time. The rate of incomingdata is integrated to obtain the real queue size q(t). At the same time, the integralof the service rate r(t) is subtracted out of the queue size to reect that the queue isbeing serviced.The rate command u(t) is the sum of the commands ur(t) and uq(t), which arebased on the service rate and e�ective queue size information respectively. We willrefer to the subsystems with outputs uq(t) and ur(t) as queue reference control (QRC)and rate reference control (RRC) respectively.The QRC contains an observer which estimates the e�ective queue size. Thisestimate is compared to the desired queue size x(t) and the error is fed into a controllerK(s) which determines the correct rate uq to decrease the error. The RRC contains28

www.manaraa.com

��� ��� ������GeneralSystemG
Size EstimatorExtended Queue

- - -- - -� -??
��� .

6
?�

{+ + + {+ r(t)x(t) q(t)ControllerK(s) RoundtripDelaye�sT Integrator1/s
d(t) ++uq(t) ur(t)u(t)

Figure 3-1: General Model of Flow Control Systema system G (not necessarily linear) which takes as an input an approximation of theservice rate rapp(t) and outputs the RRC part of the source rate ur(t). The generalmodel of rapp(t) is some disturbance d(t) added to the real service rate r(t).This model allows us to use any combination of methods described in the lastchapter. The main innovation in this model is that it allows for the combination ofsubsystems that can use both the service rate and the e�ective queue size as controlinformation.3.1 Primal Control ModelWe have seen in the previous chapter that under ideal circumstances, the smith pre-dictor and the accounting system should have the same behavior in estimating thee�ective queue size. In isolated environments, QRC controllers that use a Smith pre-dictor or a an accounting system have identical dynamics (given that all parametersare correct). However when the RRC is added to the system, the overall system dy-namics are di�erent for each case. For the moment, we will concentrate in describingthe behavior of the system using a Smith predictor as shown in �gure 3-2. We callcall this model the primal control model. Later on, in section 3.3, we will show howto modify and reanalyze the system for when it uses an accounting system ratherthan a Smith predictor. 29

www.manaraa.com

���
��� ���

��� ������GeneralSystemG- -6�AAAAK
-

?

�BBM
- -? -� -?? ?...........�

+{++
{+ + {+ r(t) q(t)ControllerK(s) RoundtripDelayIntegratorDelayRoundtrip1/s e�sT

e�sT
Integrator1/s

d(t) +uq(t) uq(t)u(t)x(t) +
+

Figure 3-2: Primal Control Model3.1.1 Input/Output RelationsFor the moment, let us also assume that the subsystem G is linear time-invariant(LTI). Now, the complete continuous time model is LTI. Its dynamics can be com-pletely characterized in terms of the transfer functions between its inputs and outputs.The relevant inputs are: x(t), r(t), and d(t). The only relevant output is q(t),the queuesize.The transfer functions between the inputs x(t), r(t), d(t) and the output q(t) are:
Hx(s) = Q(s)X(s) = K(s)e�sTs+K(s) (3.1)Hr(s) = Q(s)R(s) = G(s)e�sT � 1s+K(s) "1 + K(s)s �1� e�sT�# (3.2)Hd(s) = 1 + K(s)s �1� e�sT�s+K(s) G(s)e�sT : (3.3)With these transfer functions, we can completely determine q(t) from the inputs.In the following subsection we will describe the system's response to each of theinputs. Note that the total response is the superposition of the response to eachinput: q(t) = qx(t) + qr(t) + qd(t). 30

www.manaraa.com

3.1.2 Response to Desired Queue SizeFirst of all, we would like qx(t) to follow x(t) as closely and as fast as possible. Insteady state (if x(t) is a constant X0), we would like qx(t) = x(t) = X0. In terms ofthe the transfer function shown in equation (3.1), this means that Hx(s) should beone for s = 0. A good response to a change in x(t) requires that Hx(s) be close toone at least for small s.A simple and e�cient way of obtaining these results is to set K(s) to a constantk. The simpli�ed transfer function is:
Hx(s) = ks+ ke�sT : (3.4)When k is large, qx(t) follows x(t) closely for low frequencies (small s). Further-more, the response is always a �rst order exponential followed by a delay. This meansthat there are no unwanted oscillations and the output is always stable (for this in-put). A larger k will o�er a better response. However, we will later see that k islimited by the frequency of the feedback.3.1.3 Response to the Service RateNow, we will examine how qr(t) varies with r(t). This knowledge is of particularimportance because it tells us what type of service rate behavior will make the queueoverow or empty out. This calculation can be accomplished by convolving the im-pulse response of the system with r(t). For the moment, we assume that G is aconstant g for all s. The queue's response qr(t) to an impulse in the switch rate r(t)simpli�es to:

hr(t) = �u(t) + �1 + g � e�k(t�T)� u(t� T)� �ge�k(t�2T) � g�u(t� 2T) ; (3.5)31

www.manaraa.com

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 2 2.5 3
t

Figure 3-3: Impulse Response hr(t) with k=10, g=0.8, T=1where u(t) is the unit step function.This impulse response with a given set of parameters is illustrated in �gure 3-3.For large enough gain k, this impulse response has the nice property of approximatingtwo contiguous boxes with width T and heights -1 and g. Therefore, the queue sizeresponse caused by r(t) at any time t can be approximated by:
qr(t) � g Z t�Tt�2T r(�)d� � Z tt�T r(�)d� : (3.6)When the approximation is true, we only need information on r(t) from t� 2T tot to obtain qr(t). If the service rate does not change much relative to the round-triptime T , this calculation is easy to compute.This approximation shows how instantaneous q(t) does not depend on on theinstantaneous r(t), but rather on r(t) averaged over time intervals t � 2T to t � Tand t� T to t. This means that if r(t) oscillates wildly at very high frequencies, thequeue size will not be a�ected as long as the time averaged q(t) is reasonably stable.When g = 0, qr(t) is always negative, meaning that q(t) < qx � x(t). If x(t) is lessthan the maximum queue size, we have the certainty that the queue will not overow.32

www.manaraa.com

This is the scheme proposed in [14]. Its disadvantage is that in steady state there isa di�erence between the desired queue size x(t) and the actual queue size q(t). Forhigh rates, the queue will empty out and the link will not be fully utilized.If g = 1, qr(t) can be either positive or negative. The actual queue can eitheroverow or empty out. The advantage of this scheme is that in steady state (r(t) isconstant), the queue level q(t) is always equal to the desired level x(t). In this case,the queue is stable and the link is fully utilized.If 0 < g < 1, we can obtain a a queue behavior that is a weighted average of the twoprevious ones. If the delay-bandwidth product is low (r(t)�T << Max Queue Size)on average, we might set g to be closer to zero, since we are not losing much through-put and we can obtain a low cell loss performance. On the other hand, if the delay-bandwidth product is high on average, we might set g to be closer to one, since thatwill increase the throughput, even if the risk of losing cells is higher. Likewise, ifwe want cell loss to be minimized (i.e. for data transfer applications), we chooseg small. If throughput is more important than occasional cell loss (i.e. for videotransmissions), we choose a large g.Step ResponseIn a real system, most of the changes in the service rate will be step changes. Theservice rate will be constant during certain intervals of time and will change abruptlywhen there is a change in the operation of the network, i.e. a new user connects,other services like VBR require bandwidth from ABR. By using Laplace transformmethods, we can analytically determine how qr(t) will react to a unit step change inr(t):
qr(t) = �tu(t) + "(1 + g)(t� T)� 1� e�k(t�T)k # u(t� T)� "g(t� 2T)� g(1� e�k(t�2T))k # u(t� 2T) : (3.7)In �gure 3-4, we can visualize how qr(t) reacts to a unit step change in r(t) for33

www.manaraa.com

0

0.5

1

1.5

2

2.5

3

t

0

0.2

0.4

0.6

0.8

1

g

-1

-0.8

-0.6

-0.4

-0.2

0

Figure 3-4: Step Response hr(t) for k=10,T=1di�erent values of g. Between time 0 and T , the system's new command has nottraversed the delay yet, and qr(t) keeps moving away from its previous value. Attime T , the system starts reacting with di�erent strengths depending on the value ofg. For g = 0, qr(t) stabilizes at T and does not recover from the change between 0and T . For g = 1, qr(t) is restored at time 2T to its previous value, and the systemstabilizes from there onwards. For 0 < g < 1, qr(t) only partially recovers its previousvalue. The response of a greater or smaller step is simply scaled appropriately.Frequency ResponseAnother interesting characteristic of the system is the frequency response betweenr(t) and qr(t). The frequency response describes how qr(t) reacts to sinusoidal inputsof r(t) with di�erent frequencies w and unit amplitude. In �gure 3-5, we can see thisfrequency response with variable parameter g. A greater response for a particular wmeans that qr(t) follows r(t) with a higher amplitude.Ideally, we would like the frequency response to be zero for all w. This wouldmean that the queue does not react to the service rate. When g = 1 this is truefor w = 0, which is equivalent to saying that there is no steady-state response. Forsmaller g, there appears some response at w = 0, and this response increases as g34

www.manaraa.com

-10
-5

0
5

10
w

0

0.2

0.4

0.6

0.8

1

g

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 3-5: Frequency Response jHr(s)j for k=10,T=1gets smaller. However, when g is made smaller, the maximum frequency response(highest peak) decreases.As mentioned earlier in this section, the response of the queue to oscillationsof r(t) becomes negligible as the frequency of r(t) increases. The most perturbingfrequencies are the ones comparable to the inverse of the delay time (w � �=T).3.1.4 Error SensitivityWe will �nally analyze the system's sensitivity to an error d(t) in the measurementof the service rate. If an algorithm is purely RRC (k = 0), any �nite d(t) can causeqd(t) and the entire queue to be unstable (overow or empty out). However, whenQRC is added to RRC, as in our model, qd(t) becomes stable.From equations (3.2) and (3.3), we can see how the response to d(t) for anyconstant G(s) is proportional to the delayed part of the response to r(t). Bothinput/output relations are stable. This means that a �nite d(t) will only cause a�nite qd(t). Therefore, a �nite error in the rate measurement will only cause a �niteerror in the real queue size.
35

www.manaraa.com

3.2 Model Discussion and Improvements3.2.1 Examining QRC and RRC IndependentlyLet us examine the dynamics between r(t) and q(t) when either K(s) is zero andG(s) is one or G(s) is zero and K(s) is large. These two situations correspond tousing only the service rate (RRC) or the queue size (QRC) respectively as controlreferences. From equation (3.5), we can see that the impulse response from r(t) toq(t) in each situation becomes:
hRRCr = �u(t) + u(t� T) (3.8)hQRCr = �u(t) + (1� e�k(t�T))u(t� T)� �u(t) + u(t� T) : (3.9)For large k, each type of control has the same response to changes in the servicerate. In this case, the dynamics of QRC and RRC working independently are identical.Both algorithms are e�ective in utilizing the link bandwidth while the queue size isbetween its limits. However, both algorithms are ine�ectual at stabilizing the queuesize. In steady state as r(t) increases, q(t) decreases. As can be seen in �gure 3-6,for a step change in r(t), the most each type of algorithm can do is to stop q(t) fromchanging after time T . Neither of them alone can recover from the change of q(t)between time 0 and T . From the same �gure, we can see that the delay T in theresponse of RRC or QRC (with large k) to r(t) causes a change in the queue size�q(t) equal to the shaded area between the r(t) and u(t� T) curves.The di�erence between the two independent controls arises when the systemreaches the limits of the linearized model. The linearity of the model does not holdany longer once the queue is emptied out and more cells cannot be serviced , or whenthe queue overows and more cells cannot enter the queue. In these cases, QRCbehaves by freezing the rate command u(t), whereas RRC continues moving u(t) to-wards r(t). When the queue size is again within its limits and the linear regime is36

www.manaraa.com

��������������������

T

��������������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

Rate

Time

u(t-T)

r(t)

Time

Queue Size

T

∆ q(t)

 q(t)∆

Figure 3-6: Step Response of QRC or RRC as Isolated Systemsreestablished, QRC will be operating in the same region as before, while RRC will beoperating in another region. In this case, the queue size resulting from RRC will havea constant o�set from the corresponding command resulting from QRC. In general, aQRC algorithm will always generate the same queue size for the same constant servicerate, while the RRC algorithm will generate a queue size that also depends on howmany cells have been lost (full queue) or have not been utilized (empty queue).Independent QRC and RRC each have a window of linear operation which limitsthe rate command it can issue when the system is in the linear regime. If the system isinitialized with no service rate (r(t) = 0) and a constant queue reference (x(t) = X0),the initial window of operation is constrained by:umin = X0 �QmaxT < u(t) < umax = X0T ; (3.10)where Qmax is the maximum queue size. When r(t) is beyond these limits, the systementers the non-linear regime. If r(t) < umin, cells are lost due to queue overow, andif r(t) > umax service slots are not being used.37

www.manaraa.com

In the case of QRC, its window is �xed, and u(t) always has the same constraints.On the other hand, for RRC, the linear operation window slides after delay T so thatr(t) will always be inside the window. The width of the window is constant (Qmax=T),but the edges will move to follow r(t) if it is operating in the non-linear regime.For QRC, if X0 < Qmax, r(t) can never be less than umin (since umin is negative).Therefore, the queue cannot overow. In fact, the queue size of an independent QRCwill always be less than X0. For this reason, independent QRC is a good controlscheme for scenarios where we absolutely do not want cell loss. On the other hand,when r(t) > umax, QRC will be continuously missing service opportunities.In RRC, the window of operation takes T time to follow r(t). During this delay,independent RRC will lose cells or miss service slots. However, after T , RRC willbe back in the linear regime and fully utilize the link with no loss. For this reason,independent RRC is a good control choice when r(t) does not vary much and we wantfull utilization of the available links.3.2.2 Superposition of QRC and RRCMany of the problems and aws of QRC and RRC can be corrected by making thetwo work together. In our original model this is equivalent to adding the output ofG(s) = 1 to the output of K(s) to obtain u(t). When this happens, the desired realqueue reference level is always attainable and throughput is always maximized. Thetwo algorithms are complementary in nature, and one can correct the defects of theother.In �gure 3-7, we can observe the behavior of the cell arrival rate a(t) = u(t� T)of the combined controller (with k large) after a step in r(t). For a time interval of T ,the system does not react, and the queue size changes by an amount equal to the �rstshaded area. However, between time T and 2T , a(t) over-reacts by the right amountso that the previous queue level is restored by time 2T . Notice how the area of thesecond shaded region is the negative of that of the �rst region. After time 2T , a(t) isequal to q(t) and the queue size and the system in general are stable.From QRC's perspective, we can think of RRC as modifying the apparent service38

www.manaraa.com

Time

Queue Size

T T

��

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
��������������������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

Rate

Time

TT

r(t)

a(t)

a (t)

Time

Rate

a (t)

q

r

Figure 3-7: Step Response of the Superposition of QRC and RRC

39

www.manaraa.com

rate to rapp = r(t)� ur(t� T). This means that the average apparent rate that QRCsees is zero. QRC only sees an apparent rate during transients. QRC then cancelsthe e�ects on the queue of these transient apparent rates. QRC sees RRC as a tool toeliminate the DC-level service rate which causes the e�ective queue size to be biggerthan the real queue size. In this way, the reference level, x(t) commands the realqueue size and not just the e�ective queue size.From RRC's perspective, we can think of QRC as the feedback needed to correctits previous outputs. This can be seen in �gure 3-7 where between time T and 2T ,QRC causes an arrival rate aq(t) equal to the di�erence between r(t) and the arrivalrate due to RRC ar(t) between time 0 and T . In general, the arrival rate due to QRCis approximately aq(t) � r(t� T)� ar(t� T) : (3.11)This equation shows how QRC corrects the error of RRC after time TThe superposition of RRC and QRC also creates a new linear operating windowwhich borrows good characteristics from both RRC's sliding window and QRC's �xedwindow. The new window slides time T after r(t) changes. The position of the windowis �xed relative to r(t). The edges of the new window are always:
amin(t) = umin(t� T) = r(t� T) + X0 �QmaxT (3.12)amax(t) = umax(t� T) = r(t� T) + X0T : (3.13)Under the combined RRC + QRC scheme it is possible to slide the window ofoperation without leaving the linear regime. This means that if r(t) varies slowlyenough, a(t) will follow r(t) closely enough so that there will be no cell loss or missedservice slots. Using the window argument, the step change of the service rate thatwill guarantee no cell loss or no missed service slots are:

40

www.manaraa.com

No Cell Loss: �r(t) > �Qmax �X0T (3.14)No Unserviced Cells: �r(t) < X0T : (3.15)By choosing X0, we can adjust these \safety margins". For example, by choosingX0 = 0, we can maximize the negative range of �r(t) and therefore minimize theprobability of cell loss.3.2.3 QRC as an Error ObserverAnother interpretation that can be given to QRC is that of an observer which esti-mates the error of RRC using only measurements of the real queue size.As we mentioned previously, the RRC algorithm working alone tries to match thearrival rate a(t) with the service rate r(t), but is alway one round-trip delay time Tlate. This delay causes the queue size to increase or decrease for T amount of time.We will de�ne the rate of change in the queue size due to the RRC as e(t), the errorof the RRC algorithm working alone. Ideally, we want e(t) to be zero at least onaverage. This can be accomplished by estimating e(t) and subtracting it from thecommand of RRC ur(t). In other words, we can correct e(t) by creating a command�e(t) at a later time.In order to estimate e(t) we cannot simply di�erentiate the queue size q(t) sincethat will give us the rate of change of q(t) due to the RRC and its correction. Weneed to know the rate of change due to the RRC only. We can obtain this quantityarti�cially through an observer that simulates the RRC and the the system. Theobserver can also use feedback from the queue size to ensure that its states andvariables will converge with those of the real system.In �gure 3-8, we can follow the di�erent stages of how an observer for e(t) canbe built, and how the �nal design is equivalent to a QRC system. The �rst stageshows how to make an e(t) observer that is independent of the RRC. The secondstage shows how to modify the observer so that �e(t) can be be added to the rate41

www.manaraa.com

q (t)^

Integrator

1/s

^
e (t)

e
-sT

Integrator

1/s

q(t)--

+

r(t)

Roundtrip
Delay

u (t)
r

e(t)

Gain

K +
--

e
-sT q (t)^

Integrator

1/s

^
e (t)

e
-sT

Roundtrip
Delay

Integrator

1/s

q(t)

+

--

+ --

+

r(t)

Roundtrip
Delay

u(t)

u (t)
r

--

K

Gain

--
+

RRC

Observer

error

RRC

Observer

error

e
-sT

e
-sT

Delay
RoundtripIntegrator

1/s

RRC
only

RRC
with e
correction

^

u (t) = -e(t)q

+

+

+ --

+

r(t)

q(t)Roundtrip
Delay

Integrator

1/s

u(t)

u (t)
r

+

--
--

q (t)^
-

Gain

K

^

QRC

RRC

Figure 3-8: QRC is an Observer of RRC's Error
42

www.manaraa.com

command in order to correct the RRC. The third stage is another way of redrawingthe second stage. It shows how the RRC with error observer and correction displayedin the second stage is equivalent to the superposition of RRC and QRC.3.2.4 Linear Control with Weighted RRC and QRCIn the previous sections, we discussed the performance of the full superposition ofthe RRC and QRC components. The combination is able to maximize throughputfor any r(t). However, when r(t) changes very rapidly, even with X0 = 0, the safetymargin might not be large enough to prevent cell loss. The safety margin can beincreased by decreasing the role of RRC in the overall control. In our model this canbe done by making g smaller than one.The maximum step decrease to prevent cell loss becomes:
��r(t) < (1� g)r(t) + Qmax �X0T : (3.16)Since the operating window is adjusted after T , the above step change can be doneat most once every T time. This gives us a maximum safe discrete rate of decreasefor the averaged r(t):

if rav(t) = 1T R tt�T r(�)d�the condition �(rav(t)� rav(t� T)) < (1� g)r(t) + Qmax�X0T (3.17)will guarantee no cell loss. Note that when g is su�ciently small, r(t) can jump tozero without causing any cell loss.The drawback of a small g is that the throughput can be diminished. Speci�cally,if r(t) > X0T (1�g) , the queue will be empty and the link under-utilized. The throughputof the channel in steady state is 43

www.manaraa.com

throughput = u(t) = min �r(t); gr(t) + X0T � : (3.18)Choosing the appropriate g depends on the characteristics and functionality ofthe system. A low g will achieve a higher guarantee that cells are not lost. A higherg will achieve a higher guarantee that the service rate will be matched. If r(t) is onaverage low (r(t) < Qmax=T) or r(t) varies too rapidly (_r(t) > Qmax=T 2), then a lowg might be preferable. If r(t) is on average high or varies slowly, then a high g is moree�cient.3.2.5 Non-Linear Control with RRC and QRCFor most data tra�c applications, achieving the maximum throughput is more im-portant than strictly guaranteeing no cell loss. Since packets can be retransmitted atthe transport layer, a faster cell throughput with some losses is more e�cient than aloss free transmission with a limited throughput. Furthermore, it might be possibleto control the behavior of the switch so as to limit the rate of change of r(t) in orderto prevent cell loss. Therefore, for the \average" application we should ensure thatthe rate command u(t) can always follow service rate r(t).From the previous subsection, we know that g should be low when r(t) is low, andg should be one when r(t) is high. A g = 0 at low rates guarantees cell safety, whileg = 1 at high rates guarantees maximum throughput. To have both g's at di�erenttime, we can construct a non-linear, although piece-wise linear, system G as in theoriginal �gure 3-2. The output of G is:
G(r(t)) = max �r(t)� X0T ; 0� : (3.19)IfX0 is set toQmax, G(r(t)) will have zero slope in the interval 0 < r(t) < QmaxT anda slope of one from then onwards. In the �rst interval, the system will be completely44

www.manaraa.com

cell loss free and will maximize the bu�er to utilize future bursts in r(t). In the secondinterval, the system continues to maximize throughput and has a steady-state queuesize of zero to minimize the probability of cell loss.3.3 Dual Control ModelAt the beginning of this chapter, we proposed a general model for a single node dataconnection. In section 3.1, we narrowed our model to the case where the e�ectivequeue estimator in the QRC uses a Smith Predictor. In this section, we want toanalyze an alternative case of the general model. In this section we are still assumingthat the controller's gain k is large (k >> 1=T).3.3.1 Using Accounting QRCA Smith predictor is not the only way to obtain an estimate of the e�ective queuesize. As discussed in chapter 2, this estimator could use an accounting system. Theaccounting system adds to a register all the cells that are requested from the switchand subtracts from the same register all the cells that are received at the switch. Theregister counts the cells that are \in ight." The sum of this register and the the realqueue size gives the controller the size of the e�ective queue size.If we were to use QRC only, replacing the Smith predictor with an accountingsystem will not change the behavior of the overall control. The advantage of thisscheme is that it does not use any estimate of the round-trip time T . However, whenwe are using both RRC and QRC, replacing the Smith predictor in the QRC by anaccounting system will cause the overall control to be unstable. In order to maintainthe same overall control scheme, we need to change the RRC whenever we change theQRC.We now change the subsystem G in the RRC so that it is an LTI system withtransfer function:
45

www.manaraa.com

m m
m

m m
mGeneralSystemG- - -- - -� -??

� � .?�?6
?�+ + + {+ r(t)x(t) q(t)ControllerK(s) RoundtripDelaye�sT Integrator1/sur(t)uq(t) u(t)Integrator1/s + {+{

{ +d(t) +

Figure 3-9: Dual Control Model
-sTe ����+ T'T| bbbb"""" HHHH����g(1+1/k) u (t)r-- 6 - - -+ {r (t) 'Figure 3-10: New G Subsystem

G(s) = �g + 1k� (1� e�sT) ; (3.20)or equivalently a time domain description:Gout(t) = �g + 1k� [Gin(t)�Gin(t� T)] : (3.21)The new system with the modi�ed QRC (accounting subsystem in place of the Smithpredictor) and the modi�ed RRC (using the G in equation (3.20)) has almost the samebehavior as our original system. We will call the new system the dual QRC+RRCsystem as opposed to the primal QRC+RRC system that we have discussed untilnow. The dual QRC+RRC system and its subsystem G are shown in �gures 3-9 and3-10 respectively. For the moment, we can assume that in �gure 3-10, T 0 = T .The dual QRC+RRC system has the same dynamics as the primal system. All46

www.manaraa.com

the observations made in section 3.1 still hold. The transfer functions between theinputs r(t), x(t), d(t) and the output q(t) are the same. Also note that the gain ghas the same function in the dual structure as in the primal structure. It can bediminished to make the system safer, and it can be made piece-wise linear.3.3.2 Primal Versus Dual Control StructureEven though the input/output relations of the primal and dual control systems areequivalent, the structure and the inner functioning of the two systems are very dif-ferent.In the primal structure, we observed that the RRC was responsible for requestingall the data tra�c during steady-state operation. The QRC was responsible forcorrecting the error in the RRC during transients. On the other hand, in the dualstructure, it is the other way around. The QRC requests all of the data tra�c duringsteady state, while the RRC corrects QRC's actions during transients. The dualstructure works in a similar way as a credit based scheme, where the number ofcredits change dynamically as the service rate changes.In the original structure, since the QRC had to correct the RRC, the QRC hadto predict the behavior of the network. Therefore the QRC used an arti�cial delaywhich simulated the real round-trip delay in the network. On the other hand, in thedual structure, it is the RRC which predicts the behavior of the network, and it isthe RRC which incorporates the simulated delay. By shifting from the primal to thedual structure, we are moving the burden of simulating the round-trip delay from theQRC to the RRC.For the primal structure, the simulated delay in the QRC must be the same asthe real round-trip delay in the network. As shown in [14], a di�erence between thereal and simulated delays can cause the queue size to oscillate and even to becomeunstable. Nevertheless, as long as the error is within certain limits, the queue size canbe guaranteed to be stable, and the oscillations will be centered around the desiredqueue size. On the other hand, for the dual structure, an error in the round-trip timeestimate will not cause any oscillations or create any instabilities. A timing error will47

www.manaraa.com

only cause a steady-state error in the queue size. If T is the real round-trip delay inthe network and T̂ is its estimate used in the arti�cial delay, the steady-state errorin the queue is
�q(t) = r(t)[T̂ � T] : (3.22)In applications where the service rate r(t) is low (r(t) < Qmax=T), the dual struc-ture of the QRC+RRC control is preferable because it guarantees no oscillations andinstabilities at the cost of a small (proportional to r(t)) o�set in the queue size. Inother applications where r(t) is large, the queue size o�set might be unacceptablylarge, and the primal QRC+RRC structure is preferable because it eliminates thiso�set at the cost of risking some oscillations and instabilities.A potential problem with the dual QRC+RRC structure is that the estimate ofthe e�ective queue will accumulate an error when cells are lost during the connection.When the link is lossy, this problem can be corrected by occasionally sending specialcontrol cells which compare the total number of cells that have been requested by theswitch with the total number that have been received. The discrepancy is then usedto correct the e�ective queue size estimate.3.3.3 Varying the Dual RRCThe introduction of the arti�cial delay in the dual RRC, opens the way for newvariations that were not possible using the primal control structure. Speci�cally wecan vary the parameter T 0, as suggested in �gure 3-10, to create a di�erent subsystemG. The transfer function for the new G will be

G(s) = TT 0 �g + 1k� �1� e�sT 0� : (3.23)This new G will cause the entire control system to have a variable impulse response48

www.manaraa.com

hr, depending on the parameter T 0. As shown in �gure 3-11, a larger T 0 parameterwill cause the positive part of the impulse response to stretch, while a smaller T 0 willcause it to contract. Since the total area of the impulse response is zero, the steady-state error of all these systems is zero for any T 0. A smaller T 0 corresponds to a fasterand more energetic response of the system to r(t) variations. A larger T 0 correspondsto a slower and softer response. Note that with a very small T 0 we approach the limitestablished in theorem 1 and obtain the shortest possible transient response time.The �rst part of the impulse response is unchangeable since it corresponds to thetime when the system is starting to react to r(t) variations. Because of the round-tripdelay of T , it takes at least this amount of time for the results of the initial reactionto take place. However, the second part of the impulse response (t � T) can beshaped in any way using the dual control structure. By superimposing a weightedsum of delayed G(s), we can set the second part of the dual impulse response to beany arbitrary function.3.3.4 Optimal ControlWe have shown that by using the dual RRC+QRC model, we can design a queuesize controller with any impulse response we desire (excluding the �rst the region0 � t < T which is unchangeable). The problem we face now is deciding whichimpulse response is optimal for some particular application.Invariably, there is a tradeo� between the speed of the controller's response andits \stableness." A short impulse response will make the control system react veryrapidly but will make the system over-sensitive and react very abruptly to minorchanges over small amounts of time. A longer impulse response will �lter and softenthese abrupt responses at the cost of slowing down the whole system.In general, we can say that we would like to obtain a system that could minimizethe following criteria:� The settling time or time required for the system to regain steady-state opera-tion after a change in the available rate.49

www.manaraa.com

Time

Queue
Size

Time

Queue
Size

Time

Queue
Size

0 T 2T

0 T 1.5 T

0 T 3T

-1

+1

-1

+2

-1

+ 1/2

T’=T

T’= 1/2 T

T’= 2 T

Figure 3-11: Some Possible Impulse Responses Obtained by Varying G(s)
50

www.manaraa.com

� The variance of the queue size q(t). This is an indication of the probability thatthe queue size will be outside a certain band around the reference level.For the second criterion, we will assume that r(t) consists of white noise witha constant intensity. The white noise approximation also applies as long as thedecorrelation time is less than the round-trip delay T . With this assumption, thevariance of q(t) can be obtained by using probabilistic linear system theory:
�2q = Kqq(0) = [K̂hh �Krr](0)= [K̂hh � �(�)](0)= K̂hh(0)= Energy(h(t)) = Z 10 jhr(t)j2dt ; (3.24)where K̂hh is the deterministic autocorrelation of our system, and Kqq and Krr arethe probabilistic autocorrelations of the queue q(t) and the rate r(t) respectively.We can now pose our problem as:
minimize:�2q � settling timeor Energy[h(t)]� (T + T 0)constrained by:Expectation[q(t)] = X0 (reference level) : (3.25)Using Cauchy-Schwartz inequality and calculus, we can show that the minimiza-tion takes place when the impulse response is anti-symmetric. This is shown in the�rst impulse response of �gure 3-11. The impulse response takes the value of one fromT to 2T . This impulse response can be synthesized on a dual RRC+QRC controller51

www.manaraa.com

by using a single G(s) with T 0 = T and g = 1. This impulse response is also the oneobtained from the primal RRC+QRC controller when g = 1.Even though the control system with T ` = T is \optimal" according to the abovecriteria, we might still wish to have a di�erent T 0 for some particular scenarios. Inthe case where the available rate r(t) is very bursty, we might want to make T 0larger to �lter out the high frequency components. If r(t) is mostly steady with a fewoccasional steps, we might want T 0 to be smaller to react faster to those step changes.

52

www.manaraa.com

Chapter 4
Implementation
In chapters 2 and 3 we have studied the problem of ow control without consideringits implementation in a real network. Our models in chapter 3 were idealized singlenode representations of a network system. We assumed a uid data approximation,a continuous feedback, and no computational e�ort to obtain information such asthe available switch rate. We also made no e�orts in extending the model to themulti-node scenario.This chapter will show how the results in chapter 3 are still valid when the sim-plifying assumptions do not hold. Section 4.1 shows how to build the QRC and RRCcontroller on a real single node network. The issues discussed are how to implementan e�ective discrete feedback and how to estimate the available rate when more thanone connection is using the node. Section 4.2 explains how to extend the controlscheme to the multi-node case. Finally, in section 4.3 simulation results are presentedwhich corroborate the analytical predictions.Since ATM's Available Bit Rate service (ABR) o�ers the type of tools that weneed for an explicit ow control scheme, the control implementation will be describedwithin the ATM framework. In ATM, data travels in regular cells, while controlinformation travels in special resource management (RM) cells. As in our model,the switches calculate the desired source explicit rate (ER) and send their commandinside RM cell traveling toward the source.53

www.manaraa.com

4.1 Single Node4.1.1 QRC Feedback Using Sample and HoldIn ATM circuits, feedback information can be transported by backward RM cellsreturning to the source. Since RM cells arrive at discrete time intervals, the controlscheme must be modi�ed to work with discrete feedback.A straightforward way to perform discrete feedback is to send to the source asample of the command uq(t) every time a backward RM cell passes by the switch.When the source receives a feedback RM cell, it sets its sending rate to the value ofthe command sample uq[n]. The source then continues sending data at that samerate as long as no new RM cells arrive. When the source does receive a new RM cell,it will set the sending rate to the new value.The discretization of the feedback will cause some degradation of the performance,and if the RM cell frequency is too low the system might become unstable. In ourQRC system, the time constant is the inverse of the gain or 1=k. According to theNyquist criterion, as long as the inter-arrival time between RM cells �trm is less thanhalf of the time constant, the system will be stable:
�trm < 12k : (4.1)This stability requirement limits the value of k. This means that if the frequencyof the RM cells is small, k must take a small value. Remember that a large value ofk results in a better controller. Furthermore, even if the system is stable, but �trmis close to the Nyquist limit, the system will exhibit unwanted oscillations duringtransients and will take longer to stabilize than our continuous approximation.4.1.2 QRC Feedback Using ExpirationA more natural approach to discretize the feedback takes advantage of the meaningof the information carried in a sample of uq(t). When the switch sends a discrete54

www.manaraa.com

command uq[n] to the source, it is actually saying that it needs uq[n]=k cells to �ll thee�ective queue up to the reference level. The source can accomplish this by sendingdata at a rate of uq[n] during 1=k time. After 1=k time, the rate uq[n] is no longervalid,and the source shuts o�. If a new RM cell arrives at the source at any time, itscommand will be the new valid rate for 1=k time. If trm is the time when the lastRM cell arrived, the command of this RM cell uq[n] is the current source rate untiltrm + 1=k or another RM cell arrives, whichever comes �rst.The algorithm operation at the source and switch can be summarized as follows:
at the switch:q?(t) = q(t) + min(t� trm; 1=k)� k[x(trm)� q?(trm)] (4.2)uq[n] = uq(trm)at the source:QRC s(t) = 8>><>>:uq[n] if (t� trm) < 1=k0 if (t� trm) � 1=k : (4.3)This feedback scheme enables the controller gain k to be as large as we want.Since the switch will never request more cells than would �ll the reference level, thesystem is stable for any k.4.1.3 QRC Integrated Credit-Rate FeedbackEven though the previous QRC feedback guarantees stability, it does not specify avalue for the gain k. When the RM cell inter-arrival time �trm is large it makeslittle sense to have a large k since the response will be slow anyways. Having ak >> 1=�trm will only provide marginal increases in the system's response velocity.Moreover, a large k can create bursty data ows in the incoming links, which candisturb other connections traveling through those links. Therefore, we would like our55

www.manaraa.com

feedback system to incorporate a dynamic k which can vary according to �trm.We would like the expiration time 1=k to be equal to or proportional to the RMcell inter-arrival time �trm during which that gain is valid. Since we don't know whatthe next interval �trm will be, we can use the last interval as an estimate. When anew RM cell arrives at time t, this estimate is computed. We will denote the estimateas �rm(t) = t � trm, where trm is the time when the last RM cell passed by. Thecurrent k then becomes:
k(t) = 1��rm(t) = 1�(t� trm) ; (4.4)where � is the proportionality constant.When � >> 1, the feedback samples are expected to expire after the arrival ofthe next RM cell. Therefore the system is not responding as fast as the feedbackrate enables it. When � < 1, the feedback samples are expected to expire before thearrival of the next RM cell. Therefore the source will not send any data for someperiod of time. This e�ect will create bursty rates in the incoming cells. A good valuefor this constant is 1 < � < 10.The switch needs to inform the source of the expiration time 1=k. Therefore thebackward RM cell must contain not only the sample command rate uq[n] but also theexpiration time �exp of that sample. Note that sending both rate and time informationin the RM cell is equivalent to sending joint credit and rate information. From a rateperspective, the switch tells the source to send data at a given rate for a certainamount of time. From a credit perspective, the switch tells the source to send acertain amount of cells at a given rate.This integrated credit-rate method of sending feedback is an improvement overthe purely credit or rate mechanisms. With pure credit feedback, the source doesnot know at what rate to send the requested cells. With pure rate feedback, thesource does not know for how long the given rate is valid if no further RM cells ar-rive. By incorporating both rate and time in the feedback information, we provide56

www.manaraa.com

extra information and improve the performance of the two feedback schemes workingindependently. Only when the feedback rate goes to in�nity does the rate-only feed-back perform as well as the integrated credit-rate feedback. This is the continuousfeedback case discussed in the previous chapter.4.1.4 RRC FeedbackThe feedback for the RRC control is straightforward and follows from the QRC Feed-back. The switch estimates the service rate r(t) through one of the algorithms de-scribed in the next subsection. The estimate r̂ is sent to the source as well as anexpiration time texp. When the source receives the RM cell, it will send data at rater̂, and if no RM cell is received before, it will shutdown at texp. This expiration timeshould be su�ciently large so that rate shutdown in RRC is a rare event which onlyhappens in the extreme cases where feedback is interrupted.4.1.5 Determining the Service RateWe would now like to extend our model to the case where there are many users beingserved by a single switch. We would like the rate allowed for each VC to be the fairrate in the max-min sense. This means that any one particular VC cannot increaseits share of the bandwidth by decreasing the share of another VC with a lower rate.If ai is the arrival rate for channel i and C is the total bandwidth of the switch, thefair rate for channel j is the correct fj such that the following equation is satis�ed:Xi6=j min(ai; fj) + fj = C : (4.5)If we assume that the switches use per-VC queuing for each of the users, we canguarantee that a particular channel will not send data across a switch at a rate fasterthan its fair rate. Furthermore, with per-VC queuing, the fair rate for any channel isthe same as its available rate on that switch. The available rate is the maximum rate57

www.manaraa.com

at which that VC can have its cells serviced by the switch. The available rate is alsothe maximum rate at which a source can send data without increasing its per-VCqueue at the switch.We can also use the per-VC queue as a computational device to estimate the fairor available rate for each VC passing through the switch. In this case, the availablerate of any VC is the hypothetical service rate for when the queue of that particularVC is never empty. If this were the case, the switch would service that VC exactlyonce in every cycle of the round-robin. If in time T , the switch services xi cells foreach channel i (with time � needed to service each cell) and cycles N times aroundthe round-robin, the available cell rate r̂j for channel j can be computed with thefollowing iteration:
T 0j = [Xi xi]� x0i = xi (4.6)T 1j = [Xi6=j x0i +N]� x1i = min[N; T 1jT 0j x0i] (4.7)... ...T nj = [Xi6=j xn�1i +N]� xni = min[N; T njT 0j x0i] (4.8)

r̂j = NT nj : (4.9)It can be shown that this iteration converges. The result of the iteration gives usthe rate that a particular VC would use if its queue were always nonempty and theother VCs were to continue transmitting data at the same rate. This is equivalent tothe available bandwidth that we de�ned above.The calculation in equation (4.8) requires the switch to count at every intervalT all the cells that it services for each VC. Furthermore, the switch might haveto perform a theoretically in�nite number of calculations to determine r̂j for each58

www.manaraa.com

di�erent channel. This exact calculation can be simpli�ed considerably by using the�rst or zeroth order iteration only. When the number of VCs is large, the total realnumber of cells serviced and the hypothetical number of cells serviced for each VC isapproximately equal. This means that Pi6=j xi +N � Pi xi, making the zeroth orderapproximation (4.6) quite accurate. This calculation only requires the switch to keepcount of the number of round-robin cycles that it is performing for every interval oftime. We call the zeroth order approximation r̂max.Since r̂max � r̂j, this approximative algorithm will tend to overestimate the avail-able rate for channels with very low initial data rates. If a source j starts sending dataat this overestimated rate, after some time, the queue for channel j will be nonempty.The increase in tra�c will decrease r̂max. Speci�cally, with a non-empty queue j ,xj = N and r̂j = r̂max. The new lower r̂max will give channel j its exact availablerate. Therefore, the rate excess caused by the error in the r̂max approximation willonly last for one round-trip delay.Even though the r̂max approximation can cause some rate overshoot for one round-trip delay, this overshoot is negligible when there are a large number of virtual chan-nels. For example, let us suppose that there are 100 VCs passing through one switch,99 VCs are sending data at the full capacity, and one VC is not sending data. The 99VCs are receiving the exact available rate (r̂max = r̂j), and the other VC is receivinga rate less than 1=100 higher than the exact value (r̂max = 1:0099r̂j). Since this smallerror will only persist for one round-trip delay, the e�ects of the approximation errorare negligible. Furthermore, the small error can be corrected by the QRC algorithm.In the simulations presented in section 5.4, we only use the �rst order iteration (4.7)to calculate the available rate and did not notice any loss in performance.The zeroth order approximation described in equation (4.6) uses the per-VCqueues to perform an algorithm very similar to Anna Charny's algorithm to determinethe max-min fair rate [5].
59

www.manaraa.com

4.2 Multiple Node ExtensionIn this section we will extend our primal control model (�gure 3-2) to the multi-nodecase. We continue using per-VC queuing at each switch.4.2.1 Primal Control ExtensionIn the multi-node case, there is more than one switch between the data source andthe destination for some virtual channel. Using the primal controller at each switch,we can obtain separate information for the QRC and RRC cell requests uiq(t) anduir(t) at each switch i. The sum ui(t) = uiq(t) + uir(t) is the rate needed to stabilizethe VC queue at switch i. Because the source cannot accommodate the data ratedemands of all the switches in a VC, it needs to set its sending rate to the minimumof these requests:
data rate = min huiq(t) + uir(t)i ; 8i : (4.10)Only the node with the lowest cell request will be able to stabilize its queue at itsreference level. The queues for the same virtual channel at other nodes will either beempty or emptying out. The QRC+RRC control scheme described in the previoussections regulates the ow of data between the source and the bottleneck node. Wewill refer to this node as the active node.The multi-node control can be implemented using the integrated credit-rate feed-back discussed in subsection 4.1.3. Backward RM cells carry three �elds of informa-tion:� Requested RRC rate: ur� Requested QRC rate: uq� RM inter-arrival time: T imerm 60

www.manaraa.com

Periodically, the receiver sends a backward RM cell upstream towards the source.Originally, the �rst two �elds are empty while the third �eld contains the time whenthe next backward RM cell is expected to be sent. At each node i , whenever anRM cell is received, it calculates its requested rates uiq and uir using the gain k =1=�T imerm. If the calculated uir is less than the ur �eld in the RM cell, ur is replacedwith uir. Then, the uq �eld is set to min h�uir + uiq� ; (ur + uq)i � min [ur; uir]. Thisformula forces both the new RRC and new sum of QRC+RRC commands to be eachthe lowest of all the switches. When the backward RM cell arrives at the source,it will contain the lowest ur and the lowest sum of ur and uq of all the switches.In steady state, both commands are determined by the bottlenecked or active node.However, during transients, the active node (with the minimum uq + ur) does notnecessarily have to be the one with the lowest RRC command, ur.Note that if the expiration time for the RRC command is the same as that forthe QRC command, T imerm, we can collapse the RRC and QRC rate �elds (ur, uq)into a total rate �eld. The source needs only to send data at this total rate withoutworrying about its individual components.4.2.2 Max-Min FairnessNow that we have implemented the QRC+RRC control algorithm for the multi-node case, we would like to make some observations on its global performance. Thisalgorithm establishes a feedback mechanism between the source and the active nodefor each VC. The dynamics of the VC queue at the active node are the same as thosefor the single node case which we have analyzed in all the preceding sections. Asin the single node case, the multi-node algorithm will stabilize the queue level of itsactive node. In steady state, if g = 1 (we are fully superposing QRC and RRC) theactive node will have a queue size equal to the reference level. The other nodes inthat VC will have empty queues. We can now make the following statement on theglobal behavior.
61

www.manaraa.com

Theorem 3 The full superposition of the primal QRC and RRC algorithms in themulti-node case provides a max-min fair allocation of bandwidth among the di�erentvirtual channels.Proof: In steady state, each virtual channel will include at least one node (the activenode) where the queue size is equal to a reference level. Since the service discipline isround-robin, the active node of a particular VC will service that VC no slower thanall the other VC's passing through that node. Therefore, the link following the activenode of some VC is a bottleneck link for that VC. Since every VC has a bottlenecklink, the overall rate allocation is max-min fair. �Note that if g < 1 and we are only using a weighted superposition of RRC andQRC (or QRC only) the allocation might not be max-min fair. This is because atsu�cient high rates, the active node will have an empty queue. The link followingthe active node will be underutilized and will cease to be a bottleneck link. Withsome VC not having a bottleneck link, the overall allocation cannot be max-min fair.4.3 SimulationsIn this section we present some of the simulation results using the primal QRC+RRCow control algorithm. The algorithm is �rst simulated in the single node case usingMatlab's Simulink package. The multi-node case is simulated using Opnet. In allcases, we assume that the sources are greedy and always have data to send.4.3.1 Single Node CaseThe �rst scenario that we simulate consists of a single node network. The round-tripdelay between the source and the switch is 40 milliseconds.The primal RRC+QRC control algorithm fully utilizes the RRC (g = 1). Theswitch is operating at rates between 40,000 and 100,000 cells/sec. Control informationis sent to the source with a constant frequency of 1/64 the maximum data rate, or62

www.manaraa.com

0.15 0.2 0.25 0.3 0.35 0.4
4

5

6

7

8

9

10
x 10

4

time (sec)

ce
lls

 /
se

c

0.15 0.2 0.25 0.3 0.35 0.4 0.45
−6000

−4000

−2000

0

2000

4000

6000

time (sec)

ce
lls

 /
se

c

Figure 4-1: RRC and QRC Commands with a Band-Limited White Noise ServiceRate1562.5 Hz. The QRC gain k is set to 0:2=trm or 312.5s�1.The single node case was simulated extensively using the Simulink package. Thesingle node network and controller were modeled using adders, delays, gains, integra-tors, and zero-order holds. The model is equivalent to the continuous time systempresented in �gure 3-2, with two exceptions. First, the feedback is discretized by azero-order hold which only releases new feedback information every RM cell period(0.64 msec in our example). Second, since the total rate requested cannot be negative,the minimum QRC command is limited to the negative of the RRC command.Random Service RateIn the �rst simulation, the service rate is band-limited white noise. At every samplingtime in the simulation, the service rate is a random value between 60,000 and 80,000cells/sec. On the left side of �gure 4-1, one can observe the oscillations of the servicerate. The RRC command shown on that �gure follows the actual service rate. In theright side of the same �gure, we can observe the QRC command for that scenario.In �gure 4-2, we can observe how the real queue size changes in response to theservice rate and our control algorithm. The desired queue size is set to 50 cells.Notice that for service rate changes of tens of thousands of cells/sec, the queue sizechanges a few tens of cells. The small impact of the service rate on the queue size is inaccordance with our theory, which states that the oscillations (response) of the queue63

www.manaraa.com

0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

20

40

60

80

100

120

140

time (sec)

ce
lls

Figure 4-2: Queue Size with a Band-Limited White Noise Service Ratesize become smaller as the frequency of the service rate increases. The algorithm isalso shown to be stable, even for highly varying service rates like this one.Step Changes in Service RateIn our second simulation, the random service rate is replaced by a service rate withstep changes. The service rate starts at 70,000 cells/sec and jumps to 45,000 cells/secat 0.1 seconds. The rate jumps back to 70,000 cells/sec at 0.25 seconds. On the leftside of �gure 4-3, we can observe the RRC command as it follows the service rate.On the right side of the �gure, we can see the corresponding QRC command.Since the round-trip delay is 40 msec, the RRC command will be 40 msec late. Wecan see that during the 40 msec between 0.1 and 0.14 sec, the QRC is commandinga rate of -25,000 cell/sec (the change in rate of the step) that compensates the errordue to the RRC command's lateness. The negative QRC rate is subtracted from theRRC command. Again at time 0.25 sec, the QRC commands a rate to re�ll the emptyqueue caused by the latency of the RRC command.In �gure 4-4, we can observe how the queue size varies in time. Between time0.1 and 0.14 sec, the queue size increases steadily due to the decrease in service rate.At time 0.14 sec, the command from time 0.1 sec starts taking e�ect and steadilydecreases the queue size until it reaches the desired level at about 0.18 sec. This inaccordance with the theory established in sections 3.1 and 3.2. As �gure 3-4 predicts,64

www.manaraa.com

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
4

4.5

5

5.5

6

6.5

7

7.5
x 10

4

time (sec)

ce
lls

/s
ec

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

4

time (sec)

ce
lls

/s
ec

Figure 4-3: RRC and QRC Commands with Step Changes in Service Rate

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

200

400

600

800

1000

1200

time (sec)

ce
lls

Figure 4-4: Queue Size with Step Changes in Service Ratethe queue size changes linearly for one round-trip time and then is corrected in thenext round-trip time.At time 0.25 sec, the step change in the service rate causes the queue to empty out.The QRC controller does not respond by commanding 25,000 cells/sec for one round-trip delay but commands just enough cells to �ll up the queue to the desired level at0.29 sec. When the queue size saturates (the queue empties out), RRC's error is lessthan the step change in rate times a round-trip delay. Since the QRC controller is anobserver of RRC's error, the QRC knows this and decreases its command accordingly.
65

www.manaraa.com

4.3.2 Multiple Node CaseIn the multiple node scenario, we simulated the algorithm using Opnet. This simu-lation uses the multi-node extension of the algorithm, which is discussed in section4.2. Each switch estimates its service rate according to the �rst order approximationpresented in subsection 4.1.5. The estimation of the RRC rate is performed every 40cycles of the per-VC queue round-robin, enough to ensure that the error is only about2%. The backward RM cells are routed out-band (that is, using separate channels).Each switch implements a per-VC queue servicing discipline at every output port.The network con�guration that we are simulating is depicted in �gure 4-5. Sources0, 1, 2, and 3 are sending data to receivers 3, 0, 1, and 2 respectively. The propagationdelays between the switches is 10 msec, and that between the switches and users is0.5 usec. Switches 0, 1, 2,and 3 can transmit data at each of their ports at rates 7000,8000, 9000, and 10,000 cells/sec respectively. Like in the single node case, the RMcell frequency is set to 1562.5 Hz, and the QRC gain is set to 1=(5trm) or 312.5 s�1.The desired queue level is 50 cells for each of the VC queues.At initialization, none of the sources are sending any data. The receivers arecontinuously sending RM cells to the sources at a �xed frequency. At time 0.05 sec,source 0 starts sending data to receiver 3 on VC 3. Because switch 0 is the slowestnode, it becomes the bottlenecked and active node. At time 0.15 sec, source 3 startssending data to receiver 2 on VC 2. Because switch 2 has to transmit cells belongingto VC's 2 and 3, it becomes the next active node. At time 0.3 sec, source 2 startssending data to receiver 1 on VC 1. This causes switch 1 to become the next activenode. Finally, at time 0.4 sec, source 1 starts sending data to receiver 0 on VC 0.Switch 0 becomes once again the active node.In �gure 4-6, we can observe the RRC commands that the switches compute forthe sources. The data samples are recorded at the time when the RM cell withthe command arrives at the corresponding source. Initially, the RRC command forsource 0 is 70,000 cell/sec, which is the rate of the slowest link in the path. Whensource 3 starts sending data, the RRC command for both sources becomes 45,00066

www.manaraa.com

Source 0 Switch 0 Switch 1

Source 1 Source 2 Source 3

Receiver 0 Receiver 1 Receiver 2

Receiver 3Switch 2 Switch 3

Figure 4-5: Multiple Node Opnet Simulation Con�gurationcells/sec, which is half the rate of the node they share (switch 2). When source 2starts transmission, the RRC commands for sources 0 and 2 become 40,000 cells/sec,since that is half the capacity of the node they share (switch 1). Since source 0 isonly using 4/9 of switch 2's capacity, the RRC command for source 2 is increased to5/9 of switch 2's capacity or 50,000 cells/sec. Finally, when source 1 starts sendingdata, the RRC command for sources 0 and 1 becomes 35,000 cell/sec (half of switch0's capacity), and sources 2 and 3 increase their rates to 45,000 and 55,000 cells/secrespectively to utilize the unused bandwidth in switches 1 and 2.The RRC commands shown in �gure 4-6 are max-min fair to all the sources.However, we can also see that it takes some time (delay between switch and source)for a new RRC command computed at the switch to be followed by the source. Forexample, at time 0.15 sec, switch 2 send a lower RRC command to source 0. However,the command reaches source 0 at time 0.17 sec. Between times 0.15 and 0.19 sec,switch 2 is receiving from sources 0 and 2 more cells that it can service. This errorcannot be corrected by the RRC controller since latency is an inherent characteristicof the network. However, this error can be corrected at a later time by the QRCcontroller.In �gure 4-7, we can observe the QRC commands that arrive at each source.Initially, when each source starts sending data, the initial QRC command is high inorder for the source to send an initial burst of cells that will �ll up the VC queue of67

www.manaraa.com

0 0.1 0.2 0.3 0.4 0.5
 3

 4

 5

 6

 7

 8

time (sec)

Source 0 RRC rate (cells/sec) (x10000)

Source 1 RRC rate (cells/sec) (x10000)

Source 2 RRC rate (cells/sec) (x10000)

Source 3 RRC rate (cells/sec) (x10000)

Figure 4-6: RRC Commands at EachSource 0 0.1 0.2 0.3 0.4 0.5
 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

time (sec)

Source 0 RRC rate (cells/sec) (x10000)

Source 1 RRC rate (cells/sec) (x10000)

Source 2 RRC rate (cells/sec) (x10000)

Source 3 RRC rate (cells/sec) (x10000)

0 0.1 0.2 0.3 0.4 0.5
 -3

 -2

 -1

 0

 1

 2

time (sec)

Source 0 QRC rate (cells/sec) (x10000)

Source 1 QRC rate (cells/sec) (x10000)

Source 2 QRC rate (cells/sec) (x10000)

Source 3 QRC rate (cells/sec) (x10000)

Figure 4-7: QRC Commands at EachSourcethe active node to the desired size (50 cells in this case). After the initial burst, theQRC source quickly settles down to close to zero.At time 0.17 sec the QRC command for source 0 goes negative in order to slowsource 1 down. This is needed because source 3 has started sending data at time0.15 sec and switch 2 has become congested. Since the QRC controller in switch 2can observe the error caused by the delay, it can request the exact QRC rate neededto correct this error. Unlike the single node simulation, where the QRC commandwas a negative step, the QRC command between times 0.17 and 0.21 sec is slightlydeformed due to the extra cells that arrive from switch 0's queue and the fact thatprevious QRC commands of switch 2 were not satis�ed (it was not the active node).However, the total area under source 0's QRC command is the same and it's e�ect isidentical to the single node case. Likewise, at time 0.31 sec, the QRC command forSource 0 goes negative to reduce the congestion at switch 1 caused by the activationof source 1. Throughout the simulation, the small QRC commands correct the smallerrors in the RRC due to the errors in the estimation of the actual service rate.In �gure 4-8, we can observe the queues for VC 3 (the VC between source 0 andreceiver 3) at each of the switches. At time 0.05 sec, the queue of the active node(switch 0) �lls up to the desired queue size of 50 cells. Notice how the ramp is closeto a �rst order exponential without any oscillations. At time 0.15 sec, when source 3starts sending data, switch 2 becomes the active node and its queue starts increasingsteadily for 0.04 sec (round-trip delay). Notice that this is the analogous situation68

www.manaraa.com

0 0.1 0.2 0.3 0.4 0.5
 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

Source 0 RRC rate (cells/sec) (x10000)

Source 1 RRC rate (cells/sec) (x10000)

Source 2 RRC rate (cells/sec) (x10000)

Source 3 RRC rate (cells/sec) (x10000)

0 0.1 0.2 0.3 0.4 0.5
 -3

 -2

 -1

 0

 1

 2

time (sec)

Source 0 QRC rate (cells/sec) (x10000)

Source 1 QRC rate (cells/sec) (x10000)

Source 2 QRC rate (cells/sec) (x10000)

Source 3 QRC rate (cells/sec) (x10000)

0 0.1 0.2 0.3 0.4 0.5
 0

 0.25

 0.5

 0.75

 1

 1.25

time (sec)

Switch 0 VC 3 Output Queue (cells) (x1000)

Switch 1 VC 3 Output Queue (cells) (x1000)

Switch 2 VC 3 Output Queue (cells) (x1000)

Switch 3 VC 3 Output Queue (cells) (x1000)

Figure 4-8: Output Queue of VC 3 atEach Switch 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

Source 0 RRC rate (cells/sec) (x10000)

Source 1 RRC rate (cells/sec) (x10000)

Source 2 RRC rate (cells/sec) (x10000)

Source 3 RRC rate (cells/sec) (x10000)

0 0.1 0.2 0.3 0.4 0.5
 -3

 -2

 -1

 0

 1

 2

Source 0 QRC rate (cells/sec) (x10000)

Source 1 QRC rate (cells/sec) (x10000)

Source 2 QRC rate (cells/sec) (x10000)

Source 3 QRC rate (cells/sec) (x10000)

0 0.1 0.2 0.3 0.4 0.5
 0

 0.25

 0.5

 0.75

 1

 1.25

time (sec)

Switch 0 VC 3 Output Queue (cells) (x1000)

Switch 1 VC 3 Output Queue (cells) (x1000)

Switch 2 VC 3 Output Queue (cells) (x1000)

Switch 3 VC 3 Output Queue (cells) (x1000)

0 0.1 0.2 0.3 0.4 0.5
 0

 10

 20

 30

 40

 50

 60

time (sec)

Switch 0 VC 0 Output Queue (cells)

Switch 1 VC 0 Output Queue (cells)

Switch 1 VC 1 Output Queue (cells)

Switch 2 VC 1 Output Queue (cells)

Switch 2 VC 2 Output Queue (cells)

Switch 3 VC 2 Output Queue (cells)

Figure 4-9: Output Queues of VCs 1,2, and 3 at Each Switchto that shown in �gure 4-4 for the single node case. As the two �gures show, thebehavior of the queue of an active node in a multi-node network is very similar tothat of the queue of a single node network.At time 0.3 sec, switch 1 becomes the active node, and its queue increases for 0.2sec (round-trip delay). Again, the QRC command forces the queue size to decrease tothe desired level. At time 0.4 sec, switch 0 becomes the active node again. Since thedelay to source 0 is negligible, there is no overshoot. Note that when a node ceasesto be active, its queue empties out. At every moment of time between 0.05 and 0.5sec there is at least one active node with a non-empty queue.In �gure 4-9, we can observe the VC queues for VCs 0,1, and 2. For each VCthere is one queue in its path that is of size 50 (the desired queue size). Each queue�lls up as soon as the corresponding VC starts transmitting data. For these VCs thequeue sizes remain mostly stable throughout the simulation.

69

www.manaraa.com

Chapter 5
Bi-Channel Rate Control
In this chapter, a new algorithm is presented that further decouples the QRC and RRCdynamics. While the algorithms in the previous chapters have separate (QRC andRRC) components at the controller, the feedback does not maintain the separationbetween the rate commands determined by the two components. Conceptually, thenew algorithm uses the idea of virtual data to divide the feedback rate commandsinto two separate channels. To distinguish this new algorithm from its predecessors,we shall refer to it as bi-channel rate control (BRC). The separate channels allow forseveral improvements. First, BRC does not need an explicit estimate of the round-tripdelay in its controller. Second, unlike its predecessors, the new controller is stableeven under time-varying delays. Third, it stabilizes a queue in the shortest timepossible given no knowledge of the round-trip delay.The robustness of BRC against uctuations in the network delays also allows forimprovements in the queuing discipline of the switch. One such improvement is amechanism in which all VCs can share a single FIFO queue instead of using per-VCqueuing. While the real data is stored in a FIFO queue, the controller uses a virtualqueue [6, 26, 27] to compute the rate and queue size estimates used in the RRC andQRC. The variations in the round-trip delay of one VC due to other VCs sharing thesame FIFO queue will not cause any problems since the new algorithm can adapt tochanges in the delay.Section 5.1 describes the algorithm and shows how the independent QRC and RRC70

www.manaraa.com

feedbacks can be implemented. Section 5.2 explains and analyzes the performanceof our algorithm assuming greedy sources. The algorithm is shown to be stable,max-min fair, and optimal in the sense that it minimizes the transient response time.Section 5.3 explains the concept of virtual queuing and shows how it can be used toimplement this algorithm on switches which use FIFO queuing. Finally, section 5.4,simulates this algorithm on two di�erent types of switches (one using per-VC queuingand the other using FIFO queuing) and show that the results con�rm our theoreticalpredictions.5.1 Algorithm5.1.1 ConceptsThe BRC algorithm uses two independent controllers that work in parallel and dealwith di�erent aspects of the ow control problem. The RRC algorithm matches thesource rate with the available bandwidth of the VC. The QRC algorithm tries tostabilize the queue size of the slowest switch.The BRC algorithm is an extension of the primal control structure presented inchapter 3. As in the primal case, the BRC algorithm relies on the RRC to performthe steady-state control while the QRC performs the transient control. However,unlike the primal (as well as dual) structure, the BRC algorithm does not require anyknowledge of the round-trip delay.As in the primal structure, the QRC algorithm can be seen as RRC's error ob-server. As an observer, the QRC needs to simulate the behavior of the real system.However, instead of using a Smith predictor to simulate a hypothetical data ow, theBRC uses information carried in the RM cells to simulate this ow.This technique of using RM cells circulating through the network for simulationpurposes will be referred to as using virtual data. This virtual data is informationcontained in RM cells which represents the amount of data that would ow in thenetwork under hypothetical circumstances. By using virtual data, a single real net-71

www.manaraa.com

work can perform several virtual tra�c simulations as well manage the real tra�c.Because the BRC algorithm uses virtual data, it does not need an explicit knowledgeof the round-trip delay. The addition of a virtual channel, gives rise to the namebi-channel rate algorithm.5.1.2 Feedback ImplementationThe �rst mechanism that must be established for our ow control algorithm is afeedback loop that carries information around the network. This is implementedby resource management (RM) cells which are circulated continuously between thesource and the destination. While in the backward direction (from the destination tothe source), the RM cells are routed out-band (i.e., using a separate channel), and weassume that their propagation delay is constant. Moreover, in the backward direction,the time interval between consecutive RM cells will be denoted as �rm. This timeinterval does not have to be constant, but should be small enough to ensure a fastresponse of the system.When the RM cell reaches the source, it is forwarded to the destination along thesame VC path in a forward direction. This time, the RM cells are routed along withthe data cells of the corresponding VC. Therefore, the delay of these forward RMcells is the same as the delay of regular data cells of the same VC.In the backward direction, each RM cell contains four �elds of information inwhich control data can be transferred between the various switches and the sourcewithin the same VC path. The �rst �eld is used exclusively by the RRC controllersand the other three are used exclusively by the QRC controllers. The four �elds are:� RRC rate: RRCrm� QRC rate: QRCrm� Time interval: T imerm� QRC request: Reqrm 72

www.manaraa.com

The RRC and QRC rate �elds contain the rate requests used by the independentRRC and QRC algorithms, respectively. The time interval �eld contains the timewhen the next RM cell is expected to arrive. This information is used by the QRCcontroller to calculate its gain. The QRC request �eld is used to keep track of howmany cells each QRC controller has requested.At the destination, the RM �elds are initialized as follows: RRCrm is set to themaximum rate the destination can receive; QRCrm and Reqrm are set to zero; T imermis set to the time interval between the current and previous RM cell's arrival times.The �rst RM cell can have any value in the T imerm �eld.Every time that an RM cell passes through a switch, the switch obtains the in-formation contained in that cell, performs some computation, and incorporates newinformation in the cell.5.1.3 RRCBy using the method in subsection 4.1.5 (with whichever order of iteration we choose),the RRC can have an updated approximation of the available service rate of the switchfor each VC. Every time a backward RM cell passes through the switch, the RRCwill write into the cell's command �eld the minimum of the locally calculated rateand the rate contained in the RM �eld RRCrm. When the backward RM cell reachesthe source, the RRC command �eld will contain the minimum available rate of allthe switches in the VC path.By itself, the RRC command can ensure that the sources are sending data at thecorrect average rate. However, this scheme by itself is unstable and cannot controlthe queue sizes. If there is an average error in the measurement of the available ratesat some switch, the queue at that switch might empty out or overow. In order tostabilize the queue sizes and ensure a fair and smooth circulation of data, we need tointroduce the QRC algorithm.
73

www.manaraa.com

5.1.4 QRCThe QRC algorithm runs in parallel with the RRC algorithm. It uses feedback frommeasurements of the queue sizes to calculate its rate command. The QRC algorithmworks independently from the RRC and corrects its errors. In this chapter, we carrythe separation of the two algorithms into the feedback process. This allows us todesign a QRC algorithm which does not assume any knowledge of the round-tripdelay.The key functionality of the QRC algorithm is to estimate the e�ective queue sizeof a VC. The e�ective queue size of a VC at a switch is the total number of cells inthe VC's queue plus all the cells that have been previously requested by the QRCfor that VC and are bound to arrive. The measurement of these cells that are \onthe y" requires communication between the various switches along the VC path.The method described below is the multi-node extension of the accounting schemedescribed in chapter 3.Estimating the E�ective Queue SizeThe QRC in each switch maintains a register Qreg indicating the residual queue sizefor each VC. The residual queue size consists of all the cells that are \on the y" andhave not entered the real queue yet. The sum of the real and residual queue sizes isthe e�ective queue size.Whenever a backward RM cell passes by the switch, the previous QRC commandis multiplied by the minimum of T imerm and k0 � T imeold, where T imerm is the timeinterval �eld contained in current RM cell, and T imeold is the time interval �eldcontained in the previous RM cell. (The constant k0 will be explained later.) Theproduct is the number of cells that were requested in the previous RM time intervalReqold, which is then added to the register Qreg. In this way, cells that have beenrequested in the previous feedback interval can be added to the e�ective queue sizeestimate.At the same time, the QRC in each switch maintains a register Exreg for all the74

www.manaraa.com

unsatis�ed cell requests from downstream switches (other switches in the directionof the destination). These \excess" cells are the cells that have been requested fromdownstream but cannot be sent because of a bottleneck at the node. The requestedcells at the node Reqold are subtracted from the cells requested at the previous nodeReqrm. This di�erence (which represents the number of QRC cells that cannot berequested at this stage) is added to Exreg . Then Reqold is written into Reqrm. Thecalculated QRCnew is then written into QRCrm before the RM cell leaves the switch.We will explain later how the algorithm computes the new QRC for the switch.When a forward RM cell leaves a switch, Exreg is added to Reqrm. Exreg is thenreset to zero. We can think of Reqrm as the number of cells that have been requestedpreviously by the switch downstream. When a forward RM cell reaches a switch,Qreg is decremented by Reqrm. This operation maintains a count of how many cellsrequested from the switch are still in the network.The following pseudocode summarizes the operations performed by the QRC al-gorithm to estimate the e�ective queue size:Backward RM cell arrives at the switch:QRC_BACK_RM()fReqold = min(Timerm; k0Timeold)� QRColdQreg = Qreg + ReqoldExreg = Reqrm � ReqoldReqrm = ReqoldQRCrm =CALCULATE_NEW_QRC()QRCold = QRCrmTimeold = TimermgForward RM cell arrives at the switch:QRC_FORW_RM()fQreg = Qreg � Reqrm 75

www.manaraa.com

Reqrm = Reqrm + ExregExreg = 0gNote that if the propagation delays for the backward RM cells vary or if someRM cells are lost, some error will be introduced in our estimate of the e�ective queuesize. In the �rst case (time-varying propagation delay), the error can be correctedby using an extra �eld in the next RM cell. This extra �eld records the error in theQRC request of the previous RM cell and then corrects the e�ective queue size at thea�ected nodes. Likewise, in the second case (RM cell loss), the accumulated error canbe corrected by periodic RM cells that compare the total number of QRC requeststhat each node has made and received. The discrepancies can be used to correctlyupdate the e�ective queue sizes. The implementation details of this error recoveryscheme are beyond the scope of this thesis.Computing the New QRC RateIn order to calculate the new QRC rate, we use a proportional controller which takesthe e�ective queue size as its input. The e�ective queue size is the sum of the residualand real queue sizes (Qreg + Qreal). We use the e�ective queue rather than the realqueue to perform our calculations because there is no delay between the time a cell isrequested and when it enters the e�ective queue. This eliminates the instability asso-ciated with delays in feedback control loops. The gain of the controller is determinedby the time interval supplied by the backward RM cell. In pseudocode the functionto calculate QRC is:CALCULATE_NEW_QRC()gQRCtemp = THRESH�Qreg�Qrealk0TimermReturn max[min((QRCrm + RRCrm � Available Rate);QRCtemp);�Available Rate]g 76

www.manaraa.com

THRESH is the desired queue size. It should be set to zero or close to zero. Anyqueue size which will not cause signi�cant queuing delay is adequate. In steady state,the queue of the slowest switch in the VC path will be of this size. The choice forTHRESH is not a real design consideration since any small value (relative to the totalqueue capacity) will do.The parameter k0 is a constant gain factor. Its value should be greater than 1and less than approximately 10. The proportional controller will calculate the rate sothat 1=k0 of the queue error will disappear in one feedback step. Trying to eliminatethe entire queue error in one step can create oscillations due to measurement errors.Setting the goal for less than one tenth of the error unnecessarily slows down thesystem. Simulations show that a value of about 5 gives smooth and fast results.Again, the exact choice of k0 is not critical, and any value within a wide range isgood.The rate command calculated by the controller (QRCtemp) is limited so that thetotal rate command (QRC+RRC commands) is not larger than the total rate com-mand downstream and so that the total rate command is not negative.5.1.5 Source BehaviorWhen the source receives a backward RM cell at time tarrive, it sets its data sendingrate to be the sum of the QRC and RRC commands (QRCrm+RRCrm). If the sourcecannot or does not want to comply with this rate request, it can send data at anyrate below the speci�ed rate.The backward RM cell is then forwarded to the data destination. The data �elds inthe RM cell are left untouched. Even if the source sends less data than the requestedrate, the e�ective queue size estimates will be correctly updated, and the overallalgorithm still works.The source will also set an expiration interrupt for time tarrive + k0 � T imerm. Ifthe next RM cell arrives before the expiration time, the rate values of the new RM77

www.manaraa.com

cell will become the current data sending rates. On the other hand, if a new RM celldoes not arrive by the expiration time, the source stops sending data. When a newRM cell arrives, the source restarts transmitting data at the rate speci�ed by the RMcell.5.2 AnalysisIn this section, we will analyze the behavior of the control algorithm. We �rst look atthe single node case and see how the minimum time requirements are satis�ed. Thenwe will show its stability and fairness in the multi-node case. In this section, we stillassume that all the switches use a per-VC queuing discipline.5.2.1 Single Node CaseIn �gure 5-1, we present a block diagram representation of the feedback loop for thesingle node case. We use a discrete-time dynamic system model. The time intervalbetween events is the inter-arrival time between RM cells at the switch (�rm). At timen, r[n] is the number of cells serviced, d[n] the error in measuring the available rate,x[n] = THRESH the desire queue level, and q[n] the real queue size. For convenience,we shall express the RTD in terms of integral multiples of �rm, which is assumed tobe small compared with the RTD.This model is similar to the continuous time model presented in section 3.1. Themain di�erence is that the secondary delay (the lower of the two in the �gure 5-1)used in the QRC is not an arti�cial delay in a Smith Predictor but the real delay ofthe network. If the real round-trip delay varies, the secondary delay in the QRC willvary simultaneously. Conceptually, the primary delay models the delay in carryingthe real data, whereas the secondary delay models the delay in carrying the RM cellswhich describe the QRC tra�c. We showed in section 3.2 how the QRC algorithmcan be thought of as an observer of the RRC error. The command uq[n] is an observerestimate of the di�erence between the output and input rates at the queue, if the RRCwere to function by itself. With the new algorithm, the QRC uses the information78

www.manaraa.com

Integrator

z/(1-z)

Q
real

Q
reg

-N 0
z

-N 0
z

k 0 Time rm

Integrator

z/(1-z)

+

+

--

+

+

+ --

+

Controller
Delay

+
+

r[n]

x[n]

d[n]

--

+

Delay
Network

Network

QRC Controller

Primary Delay

Secondary Delay

RRC Controller

u[n]
1

q
u [n]

u [n]r

q[n]

Figure 5-1: Single Node Block Diagramcontained in RM cells to simulate the ow of the real data cells it has requested, andthus being able to observe and correct the error of the basic RRC algorithm.Using z-transform methods, we can calculate the transfer functions from x,d,andr to q.
Hx(z) = Q(z)X(z) =z�N0 K(K + 1)� z�1 (5.1)Hr(z) = Q(z)R(z) = ��1 + z�N0� 11� z�1+ �z�N0 � z�2N0� K(1 +K � z�1)(1� z�1) (5.2)Hd(z) = Q(z)D(z) =z�N0 11� z�1 � z�2N0 K(1 +K � z�1)(1� z�1) : (5.3)N0 is the number of discrete steps in the round-trip delay, and K is the gain of theproportional controller, 1=(k0T imerm).From the transfer functions, we can see that every input-output relation is stable.A bounded error in the switch rate measurement will only cause a bounded error inthe real queue size. A change in the service rate will only a�ect the queue size for79

www.manaraa.com

some transient time.From equation (5.2), we can calculate how soon q[n] will reach steady state afterr[n] reaches steady state. This is what we referred to in section 2.5 as the settlingtime or time to stabilize the queue. By using inverse z-transforms, we can �nd theimpulse response hr[n] between r[n] and q[n]:
hr[n] = �u[n] + (2� (1 +K)�(n+1�N0))u[n�N0]�(1� (1 +K)�(n+1�2N0))u[n� 2N0] ; (5.4)where u[n] is the step function. Since K = 1=(k0 T imerm), as the interval betweenRM cells decreases (the feedback frequency increases), the gain K increases and hr[n]approaches zero for n > 2N0 or 2RTD. Furthermore, P1n=0 hr[n] = 0. This leads usto the following theorem:Theorem 4 Suppose a switch is connected to a single source and the bi-channel ratecontrol (BRC) algorithm is used. At two round-trip delay time (RTD) following achange in the available rate, the queue length of the switch can be made arbitrarilyclose to the reference level by increasing the feedback frequency. Moreover, given a�xed feedback frequency, the error between the queue length and the reference levelwill converge to zero exponentially fast after 2 RTD following a change in the availablerate.Proof: By simple substitution into equation (5.4), it is easy to see that with asu�ciently high feedback frequency (so that K is large), the value of hr(2RTD)can be made arbitrarily close to zero. The values of hr after 2RTD will exponen-tially decrease with n. Therefore, P2RTDn=0 hr[n] � P1n=0 hr[n] = 0. In other words,P2RTDn=0 hr[n], which is the response of q[n] to a step change in r[n], can be made negli-gible at 2 RTD by increasing the feedback frequency. By linearity, the total responseq[n] is the sum of the responses to x[n] and r[n] (assuming we have a correct mea-surement of the available rate, i.e. d[n] = 0). But the response to x[n] (a constant) is80

www.manaraa.com

THRESH. Hence, q[n] can be made arbitrarily close to its steady-state value (THRESH)at 2 RTD.After 2 RTD, as Pni=0 hr[i] approaches zero exponentially, q[n] will approachTHRESH exponentially. �Note that the value of hr(2RTD) decreases exponentially with the feedback fre-quency. Therefore, the di�erence between q[n] and THRESH at 2 RTD will also decre-ment exponentially with frequency. A small increase in feedback frequency will resultin a large decrease in the queue size error at 2 RTD. A feedback period that is anorder of magnitude smaller than the RTD will be enough to ensure that the queuesize at 2 RTD will be within a few percentages of the reference level. In theorem2.5, we established that the minimum time to stabilize a queue without knowledge ofthe round-trip delay is 2 RTD. Therefore, the BRC algorithm approaches this limitexponentially as the feedback frequency increases.5.2.2 Multiple Node CaseTransient ResponseThe behavior of our control algorithm is not very di�erent in the multiple node casefrom the single node case. The slowest or most congested node of a VC path controlsthe dynamics of the VC ow. This node (the active node) imposes its rate commandsover the other nodes. The dynamics of the VC queue at the active node are similar tothose for the single node case. As in the single node case, the multi-node algorithmwill stabilize e�ectively the queue level of its active node. In steady state, the activenode will have a queue size equal to THRESH. The other nodes in that VC will haveempty queues.After the available service rate of a particular switch in a multi-node networkachieve steady state, it will take 2 RTD (as de�ned in section 2.5) to stabilize thequeue of the switch. We are assuming that the feedback frequency is su�ciently high.During the �rst RTD, the new RRC command is being sent to the source and theswitch is expecting this new rate. At 1 RTD, the switch starts receiving data at the81

www.manaraa.com

correct RRC rate. Since the e�ective queue is now stable, the switch stops requestinga QRC command and the total command sent by the switch achieves steady state.After another RTD, the arrival rate at the switch reaches steady state and the wholesystem is in steady state. As pointed out in section 2.5, this is the minimum time for aow control algorithm without knowledge of link delays and without communicationbetween VCs.StabilityIn the last section we saw that the transmission rate of the source is limited by thesum of the RRC and QRC commands. The RRC command is simply the minimumservice rate of all the switches in the VC path. Therefore, by itself, the RRC at mostcan only prevent the queue of the slowest node from decreasing.On top of that, the QRC during one feedback interval �rm can at most requestenough cells to partially �ll the e�ective queue size to THRESH. The expiration atthe source makes sure that this number of cells is never exceeded. Since there is nodelay between the time when a QRC cell is requested and when it enters the e�ectivequeue, there is no possibility for overshoot. Each switch knows how many of its QRCrequests are still upstream (residual queue) and will not request an excess of cells soas to create cyclic overshoot and instabilities. Because the queue sizes in a particularVC cannot overshoot, our algorithm is stable. A bounded change in the availablerates will only cause a bounded change in the actual rate and a temporary change inthe queue sizes. Since the algorithm does not use a Smith predictor to compute theresidual queue, its estimate of this queue is correct even when the round-trip delayvaries. Unlike the primal algorithm in section 3.1, our new algorithm is stable evenunder changes in the round-trip delay.Even though the dynamics of the independent VCs are stable, we should make surethat the interaction between the di�erent VCs does not give rise to instabilities. Seenfrom a particular node i, a decrease in the rate of any one of the VCs passing throughit may cause an increase in the available rate of the other VCs passing through nodei, which will cause the VCs active at node i (VCs whose slowest node is node i) to82

www.manaraa.com

increase their actual rates. However, because of per-VC queuing, an increase in theactual rate of a VC passing through node i will decrease the available rate of only theVCs active at node i, which will be forced to reduce their actual rates. The forcedreduction of the rate of a VC active at node i will not cause any change in the availablerates of other VCs passing through node i. Therefore, after a few round-trip delaysthe VCs passing through node i will stop interacting and they will be stabilized.Other nodes in the network might also be a�ected by changes in available rate, butthey will also stabilize a few round-trip delays after they are disturbed. If there are noloops in the network, the entire network is guaranteed to eventually stabilize. In theunlikely event that loops do exist, global stability cannot be proved, and the outcomedepends on the topology of the network. Nevertheless, for most reasonable networks,the rate variations die out as they propagate to di�erent VCs.FairnessIn steady state, the source follows the command of the slowest or active node of theVC path. Therefore this node will have a queue size equal to THRESH. The other nodesin that VC will have empty queues. We can then make the following statement onthe algorithm's allocation of rates to the di�erent VCs.Theorem 5 The bi-channel rate control (BRC) algorithm provides a max-min fairallocation of bandwidth among the di�erent virtual channels.Proof: In steady state, each virtual channel will include at least one node (the activenode) where the queue size is equal to a reference level. Since the service discipline isround-robin, the active node of a particular VC will service that VC no slower thanall the other VC's passing through that node. Therefore, the link following the activenode of some VC is a bottleneck link for that VC. Since every VC has a bottlenecklink, the overall rate allocation is max-min fair. �
83

www.manaraa.com

5.3 Virtual QueuingIn the preceding sections, we have discussed the implementation of the BRC owcontrol algorithm in network switches that use per-VC queuing. The advantage ofthis queuing discipline is that it decouples the dynamics of one VC from the otherVCs. In per-VC queuing, each VC sees the combined e�ects of the dynamics of theother VCs as simple variations in its available rate.In this section, we show how to implement the BRC ow control algorithm innetwork switches that use FIFO queuing. We accomplish this by using the techniqueof virtual queuing [6, 26, 27], which emulates per-VC queuing on a FIFO queue.Simply put, the idea involves keeping track of the queue length on a per-VC basis asif per-VC queuing were actually being used. The operation of per-VC queuing can besummarized in the following pseudo-code. qivirtual is the virtual queue size for VC i,MAXVC is the total number of VCs passing through the switch, and i is a local variable.if a cell arrives from VC j,qjvirtual = qjvirtual + 1if a cell is serviced by the FIFO queue,do fi = i+ 1if (i = MAXVC)i = 0gwhile(qivirtual = 0)qivirtual = qivirtual � 1While the real data cells are stored in the FIFO queue, the RRC and QRC algo-rithms pretend that the cells are stored in the (virtual) per-VC queues. They performall their calculations as if the switch was still using per-VC queuing. Therefore, therates the QRC and RRC algorithms request will still be the same as in the per-VC84

www.manaraa.com

queuing case. After the round-trip delay, the inputs to the FIFO queue will becomethese rates. After the queuing delay, the output of the FIFO queue will be on average(with averaging window of size greater than the round-robin period) the same as thatof a per-VC queue. Therefore, as long as the rate requests are based on a per-VCqueue (real or virtual) after a su�cient time period (one round-trip delay and onequeuing delay), the behavior of the FIFO queue will be on average (as de�ned above)the same as that of a per-VC queue.Note that the virtual queue is not used as an estimation of the real queue, butas a tool to distribute bandwidth fairly among the various VCs. The key idea is torequest data from the source as if the switches used per-VC queuing. Once the correctrates are sent from the sources, the VC rates across the network will converge to theequivalent rates under per-VC queuing. The simulation results presented in the nextsection will show that the virtual queuing technique does behave very similarly toreal per-VC queuing.5.4 SimulationsIn this section we present some simulation results using our ow control algorithm ina network with per-VC queuing and in networks with FIFO queuing. Both scenarioswere simulated using the Opnet simulation package.5.4.1 Network Topology and Simulation ScenarioThe network con�guration that we are simulating is the same as the one used insubsection 4.3.2 and is depicted in �gure 5-2. Once again, sources 0, 1, 2, and 3 aresending data to receivers 3, 0, 1, and 2 respectively. The propagation delays betweenthe switches is 10 msec, and that between the switches and users is 0.5 usec. Switches0, 1, 2,and 3 can transmit data at each of their ports at rates 7000, 8000, 9000, and10,000 cells/sec respectively. The RM cell frequency is set to 1/64 of the maximumdata rate or 1562.5 Hz, and the QRC gain is set to 1=(5�rm) or 312.5 s�1. Thedesired queue level THRESH is 50 cells for each of the VC queues.85

www.manaraa.com

Source 0 Switch 0 Switch 1

Source 1 Source 2 Source 3

Receiver 0 Receiver 1 Receiver 2

Receiver 3Switch 2 Switch 3

Figure 5-2: Multiple Node Opnet Simulation Con�gurationAt initialization, none of the sources are sending any data. The receivers arecontinuously sending RM cells to the sources at the �xed frequency. At time 0.05 sec,source 0 starts sending data to receiver 3 on VC 3. Because switch 0 is the slowestnode, it becomes the bottlenecked and active node. At time 0.15 sec, source 3 startssending data to receiver 2 on VC 2. Because switch 2 has to transmit cells belongingto VCs 2 and 3, it becomes the next active node. At time 0.3 sec, source 2 startssending data to receiver 1 on VC 1. This causes switch 1 to become the next activenode. Finally, at time 0.4 sec, source 1 starts sending data to receiver 0 on VC 0.Switch 0 becomes once again the active node.5.4.2 Network with per-VC QueuingWhen the network has a per-VC queuing discipline, our algorithm uses the per-VCqueues to perform its RRC and QRC calculations. Our new algorithm, without usingknowledge of the round-trip delay, can achieve practically identical results to thealgorithm simulated in chapter 4, which did use knowledge of the round-trip delay.In �gure 5-3, we can observe the RRC commands that the switches compute forthe sources. The data samples are recorded at the time when the RM cell withthe command arrives at the corresponding source. Initially, the RRC command forsource 0 is 70,000 cell/sec, which is the rate of the slowest link in the path. When86

www.manaraa.com

source 3 starts sending data, the RRC command for both sources becomes 45,000cells/sec, which is half the rate of the node they share (switch 2). When source 2starts transmission, the RRC commands for sources 0 and 2 become 40,000 cells/sec,since that is half the capacity of the node they share (switch 1). Since source 0 isonly using 4/9 of switch 2's capacity, the RRC command for source 2 is increased to5/9 of switch 2's capacity or 50,000 cells/sec. Finally, when source 1 starts sendingdata, the RRC command for sources 0 and 1 becomes 35,000 cell/sec (half of switch0's capacity), and sources 2 and 3 increase their rates to 45,000 and 55,000 cells/secrespectively to utilize the unused bandwidth in switches 1 and 2.The RRC commands shown in �gure 5-3 are max-min fair to all the sources.However, we can also see that it takes some time (delay between switch and source)for a new RRC command computed at the switch to be followed by the source. Forexample, at time 0.15 sec, switch 2 send a lower RRC command to source 0. However,the command reaches source 0 at time 0.17 sec. Between times 0.15 and 0.19 sec,switch 2 is receiving from sources 0 and 2 more cells that it can service. This errorcannot be corrected by the RRC controller since latency is an inherent characteristicof the network. However, this error can be corrected at a later time by the QRCcontroller.In �gure 5-4, we can observe the QRC commands that arrive at each source.Initially, when each source starts sending data, the initial QRC command is high inorder for the source to send an initial burst of cells that will �ll up the VC queue ofthe active node to the desired size (50 cells in this case). After the initial burst, theQRC source quickly settles down to close to zero.At time 0.17 sec the QRC command for source 0 goes negative in order to slowsource 1 down. This is needed because source 3 has started sending data at time0.15 sec and switch 2 has become congested. Since the QRC controller in switch 2can observe the error caused by the delay, it can request the exact QRC rate neededto correct this error. Likewise, at time 0.31 sec, the QRC command for Source 0becomes negative to reduce the congestion at switch 1 caused by the activation ofsource 1. Throughout the simulation, the small QRC commands correct the small87

www.manaraa.com

0 0.1 0.2 0.3 0.4 0.5
 0

 10

 20

 30

 40

 50

 60

time (sec)

Switch 1 VC 0 Output Queue (cells)

Switch 1 VC 1 Output Queue (cells)

Switch 2 VC 1 Output Queue (cells)

Switch 2 VC 2 Output Queue (cells)

Switch 3 VC 2 Output Queue (cells)

0 0.1 0.2 0.3 0.4 0.5
 0

 0.25

 0.5

 0.75

 1

 1.25

time (sec)

Switch 1 VC 3 Output Queue (cells) (x1000)

Switch 2 VC 3 Output Queue (cells) (x1000)

Switch 3 VC 3 Output Queue (cells) (x1000)

0 0.1 0.2 0.3 0.4 0.5
 -3

 -2

 -1

 0

 1

 2

time (sec)

Source 0 QRC rate (cells/sec) (x10000)

Source 1 QRC rate (cells/sec) (x10000)

Source 2 QRC rate (cells/sec) (x10000)

Source 3 QRC rate (cells/sec) (x10000)

0 0.1 0.2 0.3 0.4 0.5
 3

 4

 5

 6

 7

 8

time (sec)

Source 0 RRC rate (cells/sec) (x10000)

Source 1 RRC rate (cells/sec) (x10000)

Source 2 RRC rate (cells/sec) (x10000)

Source 3 RRC rate (cells/sec) (x10000)

Figure 5-3: RRC Commands at EachSource with per-VC Queuing 0 0.1 0.2 0.3 0.4 0.5
 0

 10

 20

 30

 40

 50

 60

time (sec)

Switch 1 VC 0 Output Queue (cells)

Switch 1 VC 1 Output Queue (cells)

Switch 2 VC 1 Output Queue (cells)

Switch 2 VC 2 Output Queue (cells)

Switch 3 VC 2 Output Queue (cells)

0 0.1 0.2 0.3 0.4 0.5
 0

 0.25

 0.5

 0.75

 1

 1.25

time (sec)

Switch 0 VC 3 Output Queue (cells) (x1000)

Switch 1 VC 3 Output Queue (cells) (x1000)

Switch 2 VC 3 Output Queue (cells) (x1000)

Switch 3 VC 3 Output Queue (cells) (x1000)

0 0.1 0.2 0.3 0.4 0.5
 3

 4

 5

 6

 7

 8

time (sec)

Source 0 RRC rate (cells/sec) (x10000)

Source 1 RRC rate (cells/sec) (x10000)

Source 2 RRC rate (cells/sec) (x10000)

Source 3 RRC rate (cells/sec) (x10000)

0 0.1 0.2 0.3 0.4 0.5
 -3

 -2

 -1

 0

 1

 2

time (sec)

Source 0 QRC rate (cells/sec) (x10000)

Source 1 QRC rate (cells/sec) (x10000)

Source 2 QRC rate (cells/sec) (x10000)

Source 3 QRC rate (cells/sec) (x10000)

Figure 5-4: QRC Commands at EachSource with per-VC Queuingerrors in the RRC due to the errors in the estimation of the actual service rate.In �gure 5-5, we can observe the queues for VC 3 (the VC between source 0 andreceiver 3) at each of the switches. At time 0.05 sec, the queue of the active node(switch 0) �lls up to the desired queue size of 50 cells. Notice how the ramp is closeto a �rst order exponential without any oscillations. At time 0.15 sec, when source 3starts sending data, switch 2 becomes the active node and its queue starts increasingsteadily for 0.04 sec (round-trip delay). Notice how it takes 2 RTD (0.08 sec) tostabilize this queue back to the 50 cell level.At time 0.3 sec, switch 1 becomes the active node, and its queue increases for 0.2sec (round-trip delay). The QRC command forces the queue size to decrease to thedesired level. Again, it takes 2 RTD (0.04 sec) to stabilize this queue. At time 0.4sec, switch 0 becomes the active node again. Since the delay to source 0 is negligible,there is no overshoot. Note that when a node ceases to be active, its queue emptiesout. At every moment of time between 0.05 and 0.5 sec there is at least one activenode with a non-empty queue.In �gure 5-6, we can observe the VC queues for VCs 0,1, and 2. For each VCthere is one queue in its path that is of size 50 (the desired queue size). Each queue�lls up as soon as the corresponding VC starts transmitting data. For these VCs thequeue sizes remain mostly stable throughout the simulation because of the negligibleround-trip delay. 88

www.manaraa.com

0 0.1 0.2 0.3 0.4 0.5
 0

 10

 20

 30

 40

 50

 60

time (sec)

Switch 0 VC 0 Output Queue (cells)

Switch 1 VC 0 Output Queue (cells)

Switch 1 VC 1 Output Queue (cells)

Switch 2 VC 1 Output Queue (cells)

Switch 2 VC 2 Output Queue (cells)

Switch 3 VC 2 Output Queue (cells)

0 0.1 0.2 0.3 0.4 0.5
 3

 4

 5

 6

 7

 8

Source 0 RRC rate (cells/sec) (x10000)

Source 1 RRC rate (cells/sec) (x10000)

Source 2 RRC rate (cells/sec) (x10000)

Source 3 RRC rate (cells/sec) (x10000)

0 0.1 0.2 0.3 0.4 0.5
 -3

 -2

 -1

 0

 1

 2

time (sec)

Source 0 QRC rate (cells/sec) (x10000)

Source 1 QRC rate (cells/sec) (x10000)

Source 2 QRC rate (cells/sec) (x10000)

Source 3 QRC rate (cells/sec) (x10000)

0 0.1 0.2 0.3 0.4 0.5
 0

 0.25

 0.5

 0.75

 1

 1.25

time (sec)

Switch 0 VC 3 Output Queue (cells) (x1000)

Switch 1 VC 3 Output Queue (cells) (x1000)

Switch 2 VC 3 Output Queue (cells) (x1000)

Switch 3 VC 3 Output Queue (cells) (x1000)

Figure 5-5: Output Queue of VC 3 atEach Switch 0 0.1 0.2 0.3 0.4
 3

 4

 5

 6

 7

 8

Source 0 RRC rate (cells/sec) (x10000)

Source 1 RRC rate (cells/sec) (x10000)

Source 2 RRC rate (cells/sec) (x10000)

Source 3 RRC rate (cells/sec) (x10000)

0 0.1 0.2 0.3 0.4 0.5
 -3

 -2

 -1

 0

 1

 2

Source 0 QRC rate (cells/sec) (x10000)

Source 1 QRC rate (cells/sec) (x10000)

Source 2 QRC rate (cells/sec) (x10000)

Source 3 QRC rate (cells/sec) (x10000)

0 0.1 0.2 0.3 0.4 0.5
 0

 0.25

 0.5

 0.75

 1

 1.25

time (sec)

Switch 0 VC 3 Output Queue (cells) (x1000)

Switch 1 VC 3 Output Queue (cells) (x1000)

Switch 2 VC 3 Output Queue (cells) (x1000)

Switch 3 VC 3 Output Queue (cells) (x1000)

0 0.1 0.2 0.3 0.4 0.5
 0

 10

 20

 30

 40

 50

 60

time (sec)

Switch 0 VC 0 Output Queue (cells)

Switch 1 VC 0 Output Queue (cells)

Switch 1 VC 1 Output Queue (cells)

Switch 2 VC 1 Output Queue (cells)

Switch 2 VC 2 Output Queue (cells)

Switch 3 VC 2 Output Queue (cells)

Figure 5-6: Output Queues of VCs 1,2, and 3 at Each Switch
0 0.1 0.2 0.3 0.4 0.5

 3

 4

 5

 6

 7

 8

time (sec)

Source 0 RRC rate (cells/sec) (x10000)

Source 1 RRC rate (cells/sec) (x10000)

Source 2 RRC rate (cells/sec) (x10000)

Source 3 RRC rate (cells/sec) (x10000)

Figure 5-7: RRC Commands at EachSource with FIFO Queuing 0 0.1 0.2 0.3 0.4 0.5
 -3

 -2

 -1

 0

 1

 2

time (sec)

Source 0 QRC rate (cells/sec) (x10000)

Source 1 QRC rate (cells/sec) (x10000)

Source 2 QRC rate (cells/sec) (x10000)

Source 3 QRC rate (cells/sec) (x10000)

Figure 5-8: QRC Commands at EachSource with FIFO Queuing5.4.3 Network with FIFO QueuingWhen the network uses a FIFO queuing discipline, our new algorithm needs to makeuse of virtual queuing to obtain information for the RRC and QRC controllers. Sur-prisingly, the performance of the algorithm with virtual queuing is almost identicalto its performance with per-VC queuing.In �gure 5-7, we notice a slight degradation of the RRC commands. Nevertheless,the RRC command is still max-min fair on average and during steady state. In �gures5-8, 5-9, and 5-10 we notice that the QRC commands and the virtual queue levels arepractically identically to the QRC commands and per-VC queue sizes of the previousscenario. Finally, in �gure 5-11, we can observe the FIFO queue sizes of each switchand notice how they are stable and controllable.89

www.manaraa.com

0 0.1 0.2 0.3 0.4 0.5
 0

 0.25

 0.5

 0.75

 1

 1.25

time (sec)

Switch 0 VC 3 Output Queue (cells) (x1000)

Switch 1 VC 3 Output Queue (cells) (x1000)

Switch 2 VC 3 Output Queue (cells) (x1000)

Switch 3 VC 3 Output Queue (cells) (x1000)

Figure 5-9: Virtual Queues of VC 3 atEach Switch 0 0.1 0.2 0.3 0.4 0.5
 0

 10

 20

 30

 40

 50

 60

time (sec)

Switch 0 VC 0 Output Queue (cells)

Switch 1 VC 0 Output Queue (cells)

Switch 1 VC 1 Output Queue (cells)

Switch 2 VC 1 Output Queue (cells)

Switch 2 VC 2 Output Queue (cells)

Switch 3 VC 2 Output Queue (cells)

Figure 5-10: Virtual Queues of VCs 1,2, and 3 at Each Switch

0 0.1 0.2 0.3 0.4 0.5
 0

 0.25

 0.5

 0.75

 1

 1.25

time (sec)

Switch 0 FIFO Queue Size (cells) (x1000)

Switch 1 FIFO Queue Size (cells) (x1000)

Switch 2 FIFO Queue Size (cells) (x1000)

Switch 3 FIFO Queue Size (cells) (x1000)

Figure 5-11: Actual FIFO Queues at Each Switch
90

www.manaraa.com

Chapter 6
TCP Flow Control
6.1 ObjectiveWhile ABR and the algorithms we have discussed so far assume that the end systemscomply with the explicit rate command, most current applications are only connectedto ATM via legacy networks such as Ethernet. In fact, simulation results reportedin recent ATM Forum contributions [10, 28] suggest that ow control schemes inABR relieve congestion within the ATM network at the expense of congestion at thenetwork interfaces (network edges) and cannot provide adequate ow control on anend-to-end basis between data sources. At the same time, most data applicationstoday employ the Transmission Control Protocol (TCP), which provides ow con-trol at the transport layer. The need for ABR to provide ow control at the ATMlayer is questionable in light of TCP's built-in ow control mechanism which worksindependently of the ATM layer control.This chapter presents a new e�cient scheme for regulating TCP tra�c over ATMnetworks with the goal of minimizing the network-interface. The key idea underlyingthis scheme is to match the TCP source rate to the ABR explicit rate by controllingthe ow of TCP acknowledgments at network interfaces. We present analytical andsimulation results to show that this scheme has minimal bu�er requirement, yet o�ersthe same throughput performance as if the network interface bu�er were in�nite.Moreover, the scheme is transparent to the TCP layer and requires no modi�cation91

www.manaraa.com

in the ATM network except at the network interface.6.1.1 TCP over ATMTransmission Control Protocol (TCP) is a connection-oriented transport protocolwhich is designed to work with any underlying network technology. Because it makesno assumption on how the network processes the data it sends, TCP must performits own data recovery and ow control algorithms.The ow control mechanism is meant to slow down TCP when the network be-comes congested. TCP has no direct way of knowing when the network is congested.It can only indirectly detect congestion by keeping track of how many packets arelost. When packets do get lost, the loss indicates that some queue in the networkmight have overown. Every time TCP detects a packet loss, it reduces its rate toalleviate the congestion that could have caused the packet loss.TCP's congestion control (as well as error recovery) are implemented by a dynamicwindow at the source. Every packet that is sent must be acknowledged by the source.The window size dictates the number of unacknowledged packets that can be presentin the network at any given time. When a new packet is acknowledged, the windowsize increases, and when a packet is lost, the window size decreases, forcing the rateto decrease [9].In a high-latency network environment, the window ow control mechanism ofTCP may not be very e�ective because of the time it takes for the source to detectcongestion. By the time the source starts decreasing its rate, the network has beencongested for some signi�cant amount of time. Ideally, we would want the source toreact to congestion before it occurs rather than acting when it is too late.When integrating TCP with ATM-ABR, we run into the problem that TCP ateach source ignores ATM-ABR's explicit rate. Even though the network layer knowshow much rate the source can send at a given time, TCP has its own dynamics andwill be sending data at di�erent rates depending on packet loss and its end-to-endcommunication.The classical solution to the problem is to place a bu�er in the network interface92

www.manaraa.com

or edge device between TCP and ATM. If TCP is sending data at a faster rate thanthe ATM's explicit rate, this bu�er will hold the extra packets that TCP is sending.This brute force approach, although being relatively simple, hardly takes advan-tage of the e�ective congestion control schemes developed for ABR service. Eventhough the ATM network might never be congested, the bu�er between TCP andATM can be in a constant state of congestion. As suggested by the simulation resultsin [10, 28], improving ATM's congestion control will only displace more congestionfrom the network to the edge device.6.1.2 Acknowledgment BucketIn this paper, we propose a radically di�erent solution. Instead of holding packetsat the edge bu�er, we will slow down the TCP source by holding the acknowledg-ments that it will receive. In this way, we are transforming a packet bu�er at theoutput of the edge device into an acknowledgment \bu�er" at its input. Since theessential information contained in an acknowledgment is only a sequence number, thisacknowledgment \bu�er" is really only a list of numbers. To di�erentiate this typeof bu�ering from the traditional packet bu�er, we will call it acknowledgment bucket.We will show that by adequately regulating the acknowledgment bucket, we canpractically eliminate the packet bu�er and still achieve the same output rate at theedge device. The advantage is that while storing one packet in the bu�er mightrequire a few Kbytes of memory, storing its acknowledgment in the bucket requiresonly a few bytes (size of the sequence number) of memory.By controlling the ow of acknowledgments back to the source, we are e�ectivelyextending the explicit rate ow control of ABR all the way to the TCP source. Theacknowledgment bucket serves as a translator which transforms the ABR explicit ratecommand into a sequence of TCP acknowledgments whose e�ect is to have the TCPsource send data no faster than the ABR explicit rate.The acknowledgment bucket is analogous to the storage of permits in the leakybucket scheme. TCP acknowledgments serve as permits that allow the edge deviceto request packets from the source. When the acknowledgment bucket is empty, the93

www.manaraa.com

Acks

TCP ATM

Buffer

Source
TCP

Device

Packets Cells

ER

Edge

Ack BucketFigure 6-1: General Modeledge cannot request any more packets. The acknowledgment bucket gets �lled upaccording to TCP dynamics and is drained out according to the ABR explicit rate.In section 6.2 we will lay out the speci�c algorithm used at the edge device. Insection 6.3, we analytically solve for the dynamics of our new scheme and comparethem to the conventional scheme. Finally, in section 6.4, we simulate our new schemeas well as the conventional scheme on a simple network to illustrate our theoreticalclaims.6.2 Algorithm6.2.1 ModelThe fundamental principle behind our acknowledgment bucket scheme is based onthe ability of the edge device to withhold acknowledgments returning to the source.The edge device will only release enough acknowledgments so that the source willsend data no faster than the ATM explicit rate.We assume that the acknowledgment travels on its own. If the acknowledgment iscontained in a data packet traveling in the opposite direction, we can always separatethe two into two di�erent packets so that the acknowledgment can be withheld withoutstopping the data. 94

www.manaraa.com

As seen in �gure 6-1, the edge device sends and receives cells from the ATMnetwork. It also receives packets and sends acknowledgments to the TCP source. Weassume that each TCP connection has only one edge device through which it can senddata. The packets that have been received from the source and have not yet beensent to the ATM network are stored in the packet bu�er. The acknowledgments thathave been received from the destination through the ATM network and have not yetbeen sent to the source are stored in the acknowledgment bucket. The edge devicereceives an explicit rate (ER) command from the ATM network. This ER is used todetermine the rate at which acknowledgments can be released from the bucket.In order to determine the forwarding rate for the acknowledgments, the edgedevice needs to know the e�ect of a released acknowledgment on the source. If theTCP source has data to send in the time interval of interest, it will react to thearrival of an acknowledgment by transmitting one or two packets. This ack responsedepends exclusively on the congestion window size when the acknowledgment reachesthe source. In order to predict the response of an acknowledgment, the edge devicemust keep track and predict the size of the congestion window at the source whenthe acknowledgment will reach the source. This window size prediction is done withan observer at the edge device.6.2.2 ObserverAn observer is an arti�cial simulator of the dynamics of a system and is used toestimate the states of the original system. In our case, we are interested in knowingthe congestion window size at the TCP source. We obtain this state by simulatingthe window dynamics in the edge device itself.The dynamics of the congestion window at the TCP source are relatively straight-forward. First, when the window size w is less than Wmid, the window size increasesby one every time a new acknowledgment arrives at the source. This is called the slowstart phase. When w is between Wmid and some maximum Wmax, the window sizeincreases by one every time w acknowledgments arrive at the source. This is calledthe congestion avoidance phase. Finally, when w reaches the maximum rate Wmax,95

www.manaraa.com

w stops changing as long as packets do not get lost. We will call this the saturationphase.The observer works by predicting these window dynamics. When an acknowledg-ment is released by the edge device, the observer will predict what the window size atthe source will be when that acknowledgment is received by the source. The observercan be implemented by the following subroutine at the edge device which is invokedevery time an acknowledgment is released.Acknowledgment leaves the bucket:WINDOW_OBSERVER()fif (w <Wmid)w = w + 1return(1)elseif (Wmid � w < Wmax)wfrac = wfrac + 1if (wfrac == w)w = w + 1wfrac = 0return(1)elsew = wreturn(0)elsew = wreturn(0)gApart from keeping track of the window size w, the subroutine also returns theincrease in window size caused by the release of the last acknowledgment. During96

www.manaraa.com

initialization, w is set to one, Wmax is set to the maximum window advertised by thedestination, and Wmid is set to half of that.6.2.3 Translating Explicit Rate to Ack SequenceOnce the edge device knows how the window size is increasing at the source, it canstart translating the ATM explicit rate into a sequence of acknowledgment releases.The edge device receives periodically a resource management (RM) cell from the ATMnetwork that contains the explicit rate command.We implement this rate translation by keeping track of the number of packets Rthat have been successfully requested by the ATM network as well as the numberof packets U that have been requested from the source through acknowledgmentrelease. The ATM request R is increased at the rate speci�ed by the ER as longas the acknowledgment bucket is nonempty. If there is no acknowledgment left, theexplicit rate cannot be satis�ed by the source and therefore should not be accounted.The TCP request U is increased by one every time an acknowledgment is released.Furthermore, if the observer function returns a one (the window size will increase atthe source), U is incremented by another packet. Whenever R > U , the edge devicewill release an acknowledgment from the bucket to keep R and U roughly equal.The following pseudocode demonstrates how the translator can be implemented:while # acks > 0fR = R+ ER� (time()� �)� = time()if (R > U)RELEASE_ACK()U = U+ 1if (WINDOW_OBSERVER() == 1)U = U+ 1 97

www.manaraa.com

gThe number of acknowledgments available in the bucket is denoted by # acks, and thepresent time is denoted by time(). Note that data has been quanti�ed for conveniencein terms of number of packets. If the packets have di�erent sizes, the same ideas stillhold by using the TCP octet rather than the IP packet as the data unit.6.2.4 Error RecoveryOur discussion of the acknowledgment bucket scheme so far assumed that there wasno packet loss in the network. However, when there is packet loss in the network,the source congestion window behaves in a more complicated way than described insubsection 6.2.2, and our original observer will need modi�cation.The TCP source holds a timer for every packet that it sends in order to estimatethe roundtrip delay between itself and the destination. Based on the roundtrip delayand its variance, the source computes the maximum time interval (RTO) withinwhich a previously sent packets can remain unacknowledged. If a packet remainsunacknowledged for more than RTO, the source expires, reducing the window size toone packet and resending the �rst unacknowledged packet. If the TCP source hasfast retransmit and it receives duplicate acknowledgments (typically four of the samekind), it will also decrease its window size (to one packet in TCP Tahoe) and resendthe �rst unacknowledged packet.Instead of trying to simulate all these complicated dynamics in our observer, wecan use a simple measurement to signal our observer when it should change phase.This is done by a detector at the edge device which reads the sequence number ofthe packets arriving from the source. During normal operation the sequence numbershould be in consecutive order. If the sequence number of some packet received atthe edge device is the same as that of some packet previously received, it indicatesthat the source is retransmitting. In this case the detector triggers the observer toreset its states. The following pseudocode shows how the observer should be reset98

www.manaraa.com

after the repeated packet detector gets triggered:Repeated packet is detected:RESET_OBSERVER()fWmid = w=2w = 1gNote that this reset function is valid only if the source is using TCP Tahoe. If thesource uses a version which uses fast recovery (TCP Reno), the reset function wouldhave to be modi�ed accordingly.6.2.5 ExtensionThis acknowledgment holding scheme can be used by any network (not necessarilyATM) trying to regulate the ow from a source that responds to information from thedestination. By �nding out how the source transmission rate reacts to the informationsent by the destination, the network can manipulate such information (includingwithholding it) to e�ectively force the source to send data at the network's desiredrate.6.3 AnalysisIn this section we will analyze and compare the dynamic behavior of TCP with andwithout an acknowledgment bucket. To simplify our analysis, we will use a uidapproximation. For cases where the ATM link is highly utilized, the uid approxima-tion is quite accurate since the system does not exhibit the burstiness characteristicof TCP when the link is underutilized. It is these cases that are of most interest tous because it is only in these circumstances that the network can become congested.99

www.manaraa.com

-sT
e

TCP

Source

Packet Buffer

Ack Bucket

Round-Trip

Delay

r r

cc 1

1 2

2Figure 6-2: System Model6.3.1 ModelIn �gure 6-2, we can see a block diagram representation of TCP's dynamics. TheTCP source, packet bu�er, and ack bucket are di�erent components in the systemwhich communicate with each other through the signals r1, r2, c1, and c2. Betweenthe bu�er and the bucket there is a delay that models the round-trip time for TCPdata to reach the destination and for an acknowledgment to return to the ack bucket.Therefore, c2(t) = r2(t� T).The TCP source behavior can be characterized by the following state-space rep-resentation:
_w(t) =8>>>>>>><>>>>>>>:c1(t) if w < Wmidc1(t)w if Wmid < w < Wmax0 if w = Wmax (6.1)
r1(t) = c1(t) + _w(t) : (6.2)The packet bu�er is a limited integrator that is drained by the ATM explicit rate(ER). The size of the packet bu�er is denoted by s1. Its state-space description is:

100

www.manaraa.com

_s1(t) =8>><>>:r1(t)� ER(t) if s1 > 0 or r1(t) > ER(t)0 if s1 = 0 and r1(t) � ER(t) (6.3)
r2(t) =8>><>>:ER(t) if s1 > 00 if s1 = 0 : (6.4)Finally, the ack bucket is also a limited integrator that is drained according to therate translator. The size of the bucket is denoted by s2. Its state-space representationis:
_s2(t) =8>><>>:c2(t)� c1(t) if s2 > 0 or c2(t) > c1(t)0 if s2 = 0 and c2(t) � c1(t) (6.5)
c1(t) =8>>>>>>>>>>><>>>>>>>>>>>:

ER(t)2 if s1 > 0 and w(t) < WmidER(t)1+1=w(t) if s1 > 0 and Wmid � w(t) < WmaxER(t) if s1 > 0 and w(t) = Wmax0 if s1 = 0 : (6.6)
6.3.2 Modes of OperationThere are two major modes of operation for TCP over ATM. The ATM link can beeither underutilized or saturated. The �rst case is not of much interest to us becauseunderutilization of the link means that there is no congestion and neither the packetbu�er nor the ack bucket is used for any extended period of time. Since the queueor bucket size is practically zero, TCP will perform in the same way regardless ofwhether it has a bucket or not. 101

www.manaraa.com

The second case (link saturation) which is of interest to us is much easier toanalyze because the ow of data in the ATM link follows exactly the ATM explicitrate. If the explicit rate is a constant C, then r2 = c2 = C. Depending on the sourcewindow size w, the system could be operating in any of the three phases of operation:slow start, congestion avoidance, or saturation. We will describe how TCP (with andwithout ack holding) behaves in each of the three phases. From now on, we assumethat the ATM link is operating at its maximum capacity (ER).Slow StartIf TCP �lls the ATM pipe before its window size reachesWmid, TCP will be operatingin the slow start phase while fully utilizing the ATM link. If t0 is the time when theATM pipe gets full, the evolution of window size and the various rates in the twodi�erent schemes can be solved analytically. In the �rst scheme, we are not usingack holding, and therefore the ack bucket is bypassed (c1 = c2). The evolution of thesystem during the slow start phase is:No Ack Holdingc2(t) =ER_w =c2 = ERw(t) =w(t0) + ER� (t� t0)r1(t) =c2 + _w = 2 ERs1(t) =ER� (t� t0)s2(t) =0 (6.7)

With Ack Holdingc2(t) =ER=2_w =c2 = ER=2w(t) =w(t0) + ER=2� (t� t0)r1(t) =c2 + _w = ERs1(t) =0s2(t) =ER=2� (t� t0) : (6.8)We can observe how the ack bucket is able to regulate the TCP ow (so thatit complies with the ATM ER) without having to make use of the packet bu�er(s1(t) = 0). Furthermore, in this phase, the bucket size s2 with ack holding grows athalf the rate of the packet queue s1 without ack holding.102

www.manaraa.com

Congestion AvoidanceIf TCP �lls the ATM pipe before its window reaches Wmax, it will eventually reachthe congestion avoidance phase while fully utilizing the ATM link. We let t1 be thetime when TCP �rst has a full pipe and has a window w larger than Wmid. Again wecan solve for the evolution of the window and queue sizes and the various rates:No Ack Holdingc2(t) =ER_w =ER=w(t)w(t) =q2ER(t� t1) + w2(t1)r1(t) =ER� (1 + 1=w(t))s1(t) =w(t)� ER� Ts2(t) =0 (6.9)

With Ack Holdingc2(t) =ER=(1 + 1=w(t))_w =ER=(w(t) + 1)w(t) =� 1 +q2ER(t� t1) + (1 + w(t1))2r1(t) =ERs1(t) =0s2(t) =w(t)� ER � T : (6.10)Again, we can observe that the size of the ack bucket s2 when we use ack holdinggrows slower than the size of the packet queue s1 when we don't use such a technique.Window SaturationEventually, if there is no packet loss, the window size will reach saturation. Regardlessof whether the pipe is full or whether we are using ack holding or not, all of the statesof our system will reach steady state. If the pipe is full, the TCP source will senddata at the ATM explicit rate. The window size will stop changing and the queueand bucket size will stop growing. During window saturation, the size of the bucketsize using ack holding is the same as the queue size when not using ack holding.Nevertheless, ack holding still o�ers the advantage that one particular ack is mucheasier to store than one packet.
103

www.manaraa.com

6.3.3 DiscussionIn all the three TCP phases of operation that we have examined, the ack bucket sizegrows no faster than the corresponding packet queue. Therefore, whenever there iscongestion and the ATM pipe is �lled, acknowledgment holding never increases thetotal number of data elements (packets and acknowledgments) that need to be storedin the network. Holding packets will only shift the burden of retention from the bu�erto the bucket, decreasing dramatically the physical memory requirements. While apacket might need several Kbytes of memory to be stored, an acknowledgment onlyneeds a few bits (the size of the TCP sequence number).We can think of a bu�er as a network element which increases the round-tripdelay seen by the source. In TCP (or other window-based protocols), increasingthe round-trip delay has the e�ect of slowing down the source rate. Therefore, anincrease in bu�er size will automatically decrease the source's sending rate. However,increasing the round-trip delay to slow down the source can also be achieved by theacknowledgment bucket. In fact, increasing the round-trip delay can be accomplishedby slowing down a packet or acknowledgment anywhere in the network. Regulatingcurrent TCP ow without changing the source and destination behavior necessarilyrequires manipulating and changing the round-trip delay. It is to our advantage tocontrol the round-trip delay where it is easiest. An acknowledgment bucket at theedge device seems to be an ideal place.6.4 SimulationThe performance of our acknowledgment bucket scheme was simulated using theOpnet simulation tool. As seen in �gure 6-3, the con�guration consists of a TCPTahoe source, two edge devices, and a TCP destination. Each TCP host is connectedto its edge device through a LAN connection with a 10 microsecond delay. The twoedge devices are connected by an ATM WAN connection with a 10 millisecond delay.The ATM connection has a �xed capacity of 32 Mbps and the packets are of size4Kbytes. 104

www.manaraa.com

Source Edge1 Edge2 Destination

Figure 6-3: Simulation Con�gurationTransmission starts with packet number 1. All of the packets arrive safely exceptpacket number 200 which is lost. The destination sends multiple acknowledgmentsfor packet 199, which causes the source to retransmit packet 200. We simulate thisscenario with and without using the acknowledgment bucket scheme. The simulationsshow that by using an acknowledgment bucket, we can obtain the same performancewithout hardly having to use the forward packet bu�er.In �gures 6-4 and 6-5, we can see how the window size at the source evolves withtime. The window grows rapidly during the slow start phase, it slows down duringthe congestion avoidance phase, and eventually stops growing at saturation. In thecongestion avoidance phase, we can see how the window grows in the manner describedin the analysis section. We can also see how the queue size (in �gure 6-4) or the bucketsize (referred to as permits in �gure 6-5) at the edge follow the change in the windowsize. When the window size becomes greater than the pipe capacity (round-trip delaytimes the link rate, about 21 in this case), the di�erence is unavoidably stored inthe packet queue or in the acknowledgment bucket. The growth of the window sizeis almost identical in both �gures. As predicted in the analysis section, the windowin the second �gure is slightly slower because the withheld acknowledgments slightlydecrease the window size.In �gures 6-6 and 6-7, we can see the sequence number of the packets that areleaving the source during the retransmission period. We can see that before theretransmission, the simple scheme (no acknowledgment holding) is ahead of our ac-105

www.manaraa.com

0 0.5 1 1.5 2 2.5 3
 0

 10

 20

 30

 40

 50

time (sec)

Window Size

Queue Size

Permits

Figure 6-4: Window and Queue Sizewithout Ack Holding 0 0.5 1 1.5 2 2.5 3
 0

 10

 20

 30

 40

 50

time (sec)

Window Size

Queue Size

Permits

Figure 6-5: Window, Queue, andBucket Size using Ack Holding

0.675 0.7 0.725 0.75 0.775 0.8 0.825 0.85
 550

 575

 600

 625

 650

 675

 700

 725

time (sec)

Packets sent

(Z)

Figure 6-6: Packets Sent by the Sourceduring Retransmit (no Ack Holding) 0.675 0.7 0.725 0.75 0.775 0.8 0.825 0.85
 550

 575

 600

 625

 650

 675

 700

 725

time (sec)

Packets sent

(Z)

Figure 6-7: Packets Sent by the Sourceduring Retransmit (with Ack Holding)knowledgment holding scheme in terms of sequence number. However, when a fastretransmit occurs, the retransmitted packet sees a smaller round-trip delay when us-ing acknowledgment holding (there is no forward packet queue). Therefore, whenTCP starts increasing its window again, both schemes (with and without acknowl-edgment holding) are transmitting the same sequence number packets at the sametime.In fact, we can see from �gures 6-8 and 6-9 that the output of the edge device isidentical in both cases. The lag of the TCP source in the acknowledgment holdingcase is compensated by a smaller packet bu�er. Therefore, adding an acknowledgmentbucket is transparent to the ATM network. At any time during the network operation,we can go from case 2 to case 1 (with and without acknowledgment holding) by simply106

www.manaraa.com

0.675 0.7 0.725 0.75 0.775 0.8 0.825 0.85
 550

 575

 600

 625

 650

 675

 700

 725

time (sec)

Total Packets

(Z)

Figure 6-8: Packets Transmitted bythe Edge during Retransmit (no AckHolding) 0.675 0.7 0.725 0.75 0.775 0.8 0.825 0.85
 550

 575

 600

 625

 650

 675

 700

 725

time (sec)

Total Packets

(Z)

Figure 6-9: Packets Transmitted bythe Edge during Retransmit (with AckHolding)

0 0.5 1 1.5 2 2.5 3
 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

time (sec)

Edge Output Rate

Figure 6-10: Edge Throughput with-out Ack Holding 0 0.5 1 1.5 2 2.5 3
 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

time (sec)

Edge Output Rate

Figure 6-11: Edge Throughput usingAck Holdingreleasing all the acknowledgments in the bucket.Finally, in �gures 6-10 and 6-11, we can see the output rate at the edge device ineach of the cases. Once again, the throughput is identical.The only time when the acknowledgment bucket scheme will behave di�erently atthe edge output is when the TCP source timer expires. In this case, the acknowledg-ment holding scheme will lose the chance of transmitting a number of packets equivalto the size of the queue (in the no ack holding scenario) at the time when the lostpacket is �rst transmitted by the source. In TCP Tahoe with fast retransmission thisevent happens rarely.
107

www.manaraa.com

Chapter 7
Conclusion
The main goal of this thesis is to simplify the design of network ow control algo-rithms by developing a uni�ed framework. The earlier part of the thesis introduces aseparation principle which divides the controller into two simpli�ed, decoupled, andcomplementary parts (RRC and QRC). Furthermore, the QRC part (if we use theprimal structure) or the RRC part (if we use the dual structure) behaves as an errorobserver of the other.With the BRC algorithm, the feedback of the two parts is also separated intotwo channels. This allows us to implement the QRC observer in the network itself,without having to use arti�cial delays. We can think of the algorithm as using specialinformation owing through the network to observe and control the bulk data. Wethen use the idea of virtual queuing to implement the BRC algorithm on FIFO queues.In the last chapter, a new technique is introduced to control the ow of TCP overATM or any networks that can calculate an explicit rate command. Unlike previousproposals, we obtain our results by regulating the circulation of acknowledgmentsrather than that of packets. This mechanism e�ectively extends any network-basedow control to all TCP sources. The scheme only requires changes in the ATM edgedevice, while leaving current TCP and ATM networks untouched.Future work might be directed toward simplifying the computational complexityof these algorithms. It might be possible to increase the speed of the algorithm atthe cost of only minor losses in performance. It might be interesting to investigate108

www.manaraa.com

di�erent ways in which to operate the virtual queues which cannot be used in realqueues (i.e. allowing them to have negative sizes). Also, work needs to be done onother types of acknowledgment manipulations that could be performed on TCP overATM as well as on other networks.

109

www.manaraa.com

Bibliography
[1] Y. Afek et al., \Phantom: A Simple and E�ective Flow Control Scheme,"Computer Communication Review, vol.26, n.4, 1996.[2] L. Benmohamed and S. Meerkov, \Feedback Control of Congestion in PacketSwitching Networks: The Case of a Single Congested Node,"IEEE/ACM Transactions on Networking, Vol. 1, No. 6, 1993.[3] D. Bertsekas and R. Gallager, Data Networks, Prentice Hall 1992.[4] D. Cavendish, S. Mascolo, M. Gerla \Rate Based Congestion Control for Mul-ticast ABR Tra�c," manuscript to be published.[5] A. Charny, \An algorithm for Rate Allocation in a Packet-Switching Networkwith Feedback," Tech. Rep. MIT/TR-601, MIT, 1994.[6] F. Chiussi, Y. Xia, and V. P. Kumar, \Virtual Queuing Techniques for ABRService: Improving ABR/VBR Interaction," Proceedings of Infocom '97.[7] S. Floyd, \TCP and Explicit Congestion Noti�cation,"Computer Communication Review, vol.18, no.4, 1994.[8] M. Hluchyj et. al. \Closed-Loop Rate-based Tra�c Management,"ATM Forum Contribution 94-0438R2, July 1993.[9] V. Jacobson, \Congestion Avoidance and Control,"Computer Communication Review, vol.18, no.4, 1988.

110

www.manaraa.com

[10] S. Jagannath and N. Yin, \End-to-End TCP Performance in IP/ATM Inter-networks," ATM Forum Contribution 96-1711, December 1996.[11] R. Jain, S. Kalyanaraman, and R. Viswanathan. \The OSU scheme for conges-tion avoidance using explicit rate indication,"ATM Forum Contribution 94-0883, September 1994.[12] S. Keshav, \Control-Theoretic Approach to Flow Control,"Computer Communication Review, vol.25, no.1, 1995.[13] A. Kolarov and G. Ramamurthy, \A Control Theoretic Approach to the Designof Closed Loop Rate Based Flow Control for High Speed ATM Networks,"Proceedings of Infocom '97.[14] S. Mascolo, D. Cavendish, and M. Gerla, \ATM Rate Based Congestion Controlusing a Smith Predictor: an EPRCA Implementation,"Proceedings of Infocom '96.[15] M. Matau�sek and A. Mici�c, \A Modi�ed Smith Predictor for Controlling aProcess with an Integrator and Long Dead-Time,"IEEE Transcactions on Automatic Control, vol.41, n.8, 1996.[16] J. Nagle, \Congestion Control in IP/TCP Internetworks,"Computer Communication Review, vol.25, no.1, 1995.[17] H. Ohsaki, M. Murata, H. Suzuki, C. Ikeda, and H. Miyahara,\Rate-based Congestion Control for ATM Networks,"Computer Communication Review, vol 25, n.2, 1995.[18] K. Ramakrishnan and R. Jain, \A Binary Feedback Scheme for CongestionAvoidance in Computer Networks with a Connectionless Network Layer,"Computer Communication Review, vol.25, no.1, 1995.[19] D. Sisalem and H. Schulzrinne, \Switch Mechanisms for the ABR Service:A Comparison Study," TDP '96, La Londes Les Maures, France, 1996,http://www.fokus.gmd.de/step/dor.111

www.manaraa.com

[20] D. Sisalem and H. Schulzrinne, \End-to-End Rate Control in ABR,"WATM '95, Paris, France, 1995, http://www.fokus.gmd.de/step/dor.[21] D. Sisalem and H. Schulzrinne, \Congestion Control in TCP: Performance ofBinary Congestion Noti�cation Enhanced TCP Compared to Reno and TahoeTCP," ICNP '96, Columbus, Ohio, 1996, http://www.fokus.gmd.de/step/dor.[22] K. Siu and R. Jain, \A Brief Overview of ATM: Protocol Layers, LAN Emula-tion, and Tra�c Management,"Computer Communication Review, vol.25, no.2, 1995.[23] K. Siu and H. Tzeng, \Intelligent Congestion Control for ABR Service in ATMNetworks," Computer Communication Review, vol.24, no.5, 1994.[24] K.-Y. Siu and H.-Y. Tzeng, \Adaptive Proportional Rate Control (APRC) withIntelligent Congestion Indication,"ATM Forum Contribution 94-0888, September 1994.[25] O. Smith, \A Controller to Overcome Dead Time,"ISA Journal, Vol. 6, No. 2, Feb. 1959.[26] H.-Y. Tzeng and K.-Y. Siu, \Performance of TCP over UBR in ATM with EPDand Virtual Queuing Techniques," Proceedings of Workshop on Transport LayerProtocols over High Speed Networks, IEEE Globecom, Nov. 1996.[27] Y. Wu, K.-Y. Siu, and W. Ren, \Improved Virtual Queueing and EPD Tech-niques for TCP over ATM," Technical Report, d'Arbelo� Laboratory for Infor-mation Systems and Technology, MIT. January 1997.[28] N. Yin and S. Jagannath, \End-to-End Tra�c Management in IP/ATM Inter-networks," ATM Forum Contribution 96-1406, October 1996.
112

